Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(6): 068103    DOI: 10.1088/1674-1056/27/6/068103
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

In situ growth of different numbers of gold nanoparticles on MoS2 with enhanced electrocatalytic activity for hydrogen evolution reaction

Xuan Zhao(赵宣), Da-Wei He(何大伟), Yong-Sheng Wang(王永生), Chen Fu(付晨)
Key Laboratory of Luminescence and Optical Information, Beijing Jiaotong University, Beijing 100044, China
Abstract  

Producing hydrogen through a hydrogen evolution reaction (HER) by splitting water at the suitable overpotential is a great alternative to solving the problems of environmental pollution and the energy crisis. Molybdenum sulfide (MoS2) has attracted extensive attention as one of the most promising catalytic materials for HER. In this work, we design a facile method to in situ grow gold nanoparticles (AuNPs) on MoS2. Different numbers of AuNPs with MoS2 are used to find the best catalytic activity. Due to the larger active surface area and higher conductivity of the Au-MoS2 composites, all the Au-MoS2 composites exhibit more enhanced HER electroactivity than pure MoS2. In brief, the new material architecture exhibits optimized HER activity with a low onset overpotential of 0.12 V, low Tafel slope of 0.163 V·dec-1, and an excellent stability in acidic solution.

Keywords:  MoS2      AuNPs      hydrogen evolution reaction      electrocatalysts  
Received:  26 October 2017      Revised:  13 March 2018      Accepted manuscript online: 
PACS:  81.07.Bc (Nanocrystalline materials)  
  81.10.Dn (Growth from solutions)  
  81.16.Dn (Self-assembly)  
  82.30.Rs (Hydrogen bonding, hydrophilic effects)  
Fund: 

Project supported by the National Basic Research Program,China (Grant Nos.2016YFA0202300 and 2016YFA0202302),the National Natural Science Foundation of China (Grant Nos.61527817,61335006,and 61378073),and the Beijing Municipal Science and Technology Committee,China (Grant No.Z151100003315006).

Corresponding Authors:  Xuan Zhao, Da-Wei He, Yong-Sheng Wang     E-mail:  983682235@qq.com;dwhe@bjtu.edu.cn;yshwang@bjtu.edu.cn

Cite this article: 

Xuan Zhao(赵宣), Da-Wei He(何大伟), Yong-Sheng Wang(王永生), Chen Fu(付晨) In situ growth of different numbers of gold nanoparticles on MoS2 with enhanced electrocatalytic activity for hydrogen evolution reaction 2018 Chin. Phys. B 27 068103

[1] Zhang Y, Yan J, Ren X, Pang L, Chen H and Liu S 2017 International Journal of Hydrogen Energy 42 5472
[2] Jin J, Zhu Y, Liu Y, Li Y, Peng W, Zhang G, Zhang F and Fan X 2017 International Journal of Hydrogen Energy 42 3947
[3] Mo Q, Yao Y, Liu B, Peng L, Yan H, Hou Z, Wang J and Lin Y 2017 Mater. Chem. Phys. 193 298
[4] Yang L, Zhu X, Xiong S, Wu X, Shan Y and Chu PK 2016 ACS Appl. Mater. Interfaces 8 13966
[5] Zhang R, Li X, Zhang L, Lin S and Zhu H 2016 Adv. Sci. (Weinh) 3 1600208
[6] Li A, Hu Y, Yu M, Liu X and Li M 2017 International Journal of Hydrogen Energy 42 9419
[7] Xie J and Xie Y 2015 ChemCatChem 7 2568
[8] Zhao X, Ma X, Sun J, Li D and Yang X 2016 ACS Nano 10 2159
[9] Zhou H, Yu F, Sun J, He R, Wang Y, Guo CF, Wang F, Lan Y, Ren Z and Chen S 2016 J. Mater. Chem. A 4 9472
[10] Li P, Yang Z, Shen J, Nie H, Cai Q, Li L, Ge M, Gu C, Chen X, Yang K, Zhang L, Chen Y and Huang S 2016 ACS Appl. Mater. Interfaces 8 3543
[11] Pu Z, Liu Q, Asiri AM, Obaid AY and Sun X 2014 Electrochimica Acta 134 8
[12] Zhang Q, Bai H, Zhang Q, Ma Q, Li Y, Wan C and Xi G 2016 Nano Res. 9 3038
[13] Man Li Q M, Wei Zi, Xiaojing Liu, Xuejie Zhu and Shengzhong (Frank) Liu 2015 Science Adv. 1
[14] Xing Z, Liu Q, Asiri AM and Sun X 2014 Adv. Mater. 26 5702
[15] Chen L, Yang W, Liu X and Jia J 2017 International Journal of Hydrogen Energy 42 12246
[16] Khan M, Yousaf AB, Chen M, Wei C, Wu X, Huang N, Qi Z and Li L 2016 Nano Res. 9 837
[17] Liu Y R, Li X, Han G Q, Dong B, Hu W H, Shang X, Chai Y M, Liu Y Q and Liu C G 2017 International Journal of Hydrogen Energy 42 2054
[18] Dai X, Du K, Li Z, Liu M, Ma Y, Sun H, Zhang X and Yang Y 2015 ACS Appl. Mater. Interfaces 7 27242
[19] Sun X, Dai J, Guo Y, Wu C, Hu F, Zhao J, Zeng X and Xie Y 2014 Nanoscale 6 8359
[20] Yang J, Wang K, Zhu J, Zhang C and Liu T 2016 ACS Appl. Mater. Interfaces 8 31702
[21] Guo B, Yu K, Li H, Song H, Zhang Y, Lei X, Fu H, Tan Y and Zhu Z 2016 ACS Appl. Mater. Interfaces 8 5517
[22] Shen X, Xia X, Ye W, Du Y and Wang C 2016 J. Solid State Electrochem. 21 409
[23] Xie J, Zhang H, Li S, Wang R, Sun X, Zhou M, Zhou J, Lou X W and Xie Y 2013 Adv. Mater. 25 5807
[24] Deng J, Li H, Wang S, Ding D, Chen M, Liu C, Tian Z, Novoselov K S, Ma C, Deng D and Bao X 2017 Nat. Commun. 8 14430
[25] Xiao Z, Song J, Ferry D K, Ducharme S and Hong X 2017 Phys. Rev. Lett. 118 236801
[26] Chua X J and Pumera M 2017 Phys. Chem. Chem. Phys. 19 6610
[27] Kibsgaard J, Chen Z, Reinecke B N and Jaramillo T F 2012 Nat. Mater. 11 963
[28] Li Y, Wang H, Xie L, Liang Y, Hong G and Dai H 2011 J. Am. Chem. Soc. 133 7296
[29] Voiry D, Salehi M, Silva R, Fujita T, Chen M, Asefa T, Shenoy V B, Eda G and Chhowalla M 2013 Nano Lett. 13 6222
[30] Berit Hinnemann P G M, Jacob Bonde, Kristina P Jφrgensen, Jane H Nielsen, Sebastian Horch, Ib Chorkendorff, and Jens K Nφrskov 2005 J. Am. Chem. Soc. 127 5308
[31] Thomas F Jaramillo K P J, Jacob Bonde, Jane H. Nielsen, Sebastian Horch, Ib Chorkendorff 2007 Science 317 100.
[32] Smith A J, Chang Y H, Raidongia K, Chen T Y, Li L J and Huang J 2014 Adv. Energy Mater. 4 1400398
[33] Huang X, Zeng Z, Bao S, Wang M, Qi X, Fan Z and Zhang H 2013 Mol. Theor. 4 1444
[34] Wu X, Guo S and Zhang J 2015 Chem. Commun. 51 6318
[35] Lavie A, Yadgarov L, Houben L, Popovitz-Biro R, Shaul T E, Nagler A, Suchowski H and Tenne R 2017 Nanotechnology 28 24LT03
[36] Chen Y, Peng W C and Li X Y 2017 Nanotechnology 28 205603
[37] Xiao C, Liu J, Yang A, Zhao H, He Y, Li X and Yuan Z 2015 Microchimica Acta 182 1501
[38] Zhao X, He D, Wang Y, Hu Y and Fu C 2016 Chem. Phys. Lett. 647 165
[39] Li D, Xiao Z, Golgir H R, Jiang L, Singh V R, Keramatnejad K, Smith K E, Hong X, Jiang L, Silvain J F and Lu Y 2017 Adv. Electron. Mater. 3 1600335
[1] Resonant perfect absorption of molybdenum disulfide beyond the bandgap
Hao Yu(于昊), Ying Xie(谢颖), Jiahui Wei(魏佳辉), Peiqing Zhang(张培晴),Zhiying Cui(崔志英), and Haohai Yu(于浩海). Chin. Phys. B, 2023, 32(4): 048101.
[2] A three-band perfect absorber based on a parallelogram metamaterial slab with monolayer MoS2
Wen-Jing Zhang(张雯婧), Qing-Song Liu(刘青松), Bo Cheng(程波), Ming-Hao Chao(晁明豪),Yun Xu(徐云), and Guo-Feng Song(宋国峰). Chin. Phys. B, 2023, 32(3): 034211.
[3] MoS2/Si tunnel diodes based on comprehensive transfer technique
Yi Zhu(朱翊), Hongliang Lv(吕红亮), Yuming Zhang(张玉明), Ziji Jia(贾紫骥), Jiale Sun(孙佳乐), Zhijun Lyu(吕智军), and Bin Lu(芦宾). Chin. Phys. B, 2023, 32(1): 018501.
[4] Growth behaviors and emission properties of Co-deposited MAPbI3 ultrathin films on MoS2
Siwen You(游思雯), Ziyi Shao(邵子依), Xiao Guo(郭晓), Junjie Jiang(蒋俊杰), Jinxin Liu(刘金鑫), Kai Wang(王凯), Mingjun Li(李明君), Fangping Ouyang(欧阳方平), Chuyun Deng(邓楚芸), Fei Song(宋飞), Jiatao Sun(孙家涛), and Han Huang(黄寒). Chin. Phys. B, 2023, 32(1): 017901.
[5] Enhanced photoluminescence of monolayer MoS2 on stepped gold structure
Yu-Chun Liu(刘玉春), Xin Tan(谭欣), Tian-Ci Shen(沈天赐), and Fu-Xing Gu(谷付星). Chin. Phys. B, 2022, 31(8): 087803.
[6] Monolayer MoS2 of high mobility grown on SiO2 substrate by two-step chemical vapor deposition
Jia-Jun Ma(马佳俊), Kang Wu(吴康), Zhen-Yu Wang(王振宇), Rui-Song Ma(马瑞松), Li-Hong Bao(鲍丽宏), Qing Dai(戴庆), Jin-Dong Ren(任金东), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2022, 31(8): 088105.
[7] Precisely controlling the twist angle of epitaxial MoS2/graphene heterostructure by AFM tip manipulation
Jiahao Yuan(袁嘉浩), Mengzhou Liao(廖梦舟), Zhiheng Huang(黄智恒), Jinpeng Tian(田金朋), Yanbang Chu(褚衍邦), Luojun Du(杜罗军), Wei Yang(杨威), Dongxia Shi(时东霞), Rong Yang(杨蓉), and Guangyu Zhang(张广宇). Chin. Phys. B, 2022, 31(8): 087302.
[8] Laser fragmentation in liquid synthesis of novel palladium-sulfur compound nanoparticles as efficient electrocatalysts for hydrogen evolution reaction
Guo-Shuai Fu(付国帅), Hong-Zhi Gao(高宏志), Guo-Wei Yang(杨国伟), Peng Yu(于鹏), and Pu Liu(刘璞). Chin. Phys. B, 2022, 31(7): 077901.
[9] Improved performance of MoS2 FET by in situ NH3 doping in ALD Al2O3 dielectric
Xiaoting Sun(孙小婷), Yadong Zhang(张亚东), Kunpeng Jia(贾昆鹏), Guoliang Tian(田国良), Jiahan Yu(余嘉晗), Jinjuan Xiang(项金娟), Ruixia Yang(杨瑞霞), Zhenhua Wu(吴振华), and Huaxiang Yin(殷华湘). Chin. Phys. B, 2022, 31(7): 077701.
[10] Anisotropic refraction and valley-spin-dependent anomalous Klein tunneling in a 1T'-MoS2-based p-n junction
Fenghua Qi(戚凤华) and Xingfei Zhou(周兴飞). Chin. Phys. B, 2022, 31(7): 077301.
[11] Vacuum current-carrying tribological behavior of MoS2-Ti films with different conductivities
Lu-Lu Pei(裴露露), Peng-Fei Ju(鞠鹏飞), Li Ji(吉利), Hong-Xuan Li(李红轩),Xiao-Hong Liu(刘晓红), Hui-Di Zhou(周惠娣), and Jian-Min Chen(陈建敏). Chin. Phys. B, 2022, 31(6): 066201.
[12] Analysis of the generation mechanism of the S-shaped JV curves of MoS2/Si-based solar cells
He-Ju Xu(许贺菊), Li-Tao Xin(辛利桃), Dong-Qiang Chen(陈东强), Ri-Dong Cong(丛日东), and Wei Yu(于威). Chin. Phys. B, 2022, 31(3): 038503.
[13] Research progress of Pt and Pt-based cathode electrocatalysts for proton-exchange membrane fuel cells
Ni Suo(索妮), Longsheng Cao(曹龙生), Xiaoping Qin(秦晓平), and Zhigang Shao(邵志刚). Chin. Phys. B, 2022, 31(12): 128108.
[14] High-sensitive phototransistor based on vertical HfSe2/MoS2 heterostructure with broad-spectral response
Wen Deng(邓文), Li-Sheng Wang(汪礼胜), Jia-Ning Liu(刘嘉宁), Tao Xiang(相韬), and Feng-Xiang Chen(陈凤翔). Chin. Phys. B, 2022, 31(12): 128502.
[15] Accelerated oxygen evolution kinetics on Ir-doped SrTiO3 perovskite by NH3 plasma treatment
Li-Li Deng(邓丽丽), Xiao-Ping Ma(马晓萍), Man-Ting Lu(卢曼婷), Yi He(何弈), Rong-Lei Fan(范荣磊), and Yu Xin(辛煜). Chin. Phys. B, 2022, 31(11): 118201.
No Suggested Reading articles found!