INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Prev
Next
|
|
|
In situ growth of different numbers of gold nanoparticles on MoS2 with enhanced electrocatalytic activity for hydrogen evolution reaction |
Xuan Zhao(赵宣), Da-Wei He(何大伟), Yong-Sheng Wang(王永生), Chen Fu(付晨) |
Key Laboratory of Luminescence and Optical Information, Beijing Jiaotong University, Beijing 100044, China |
|
|
Abstract Producing hydrogen through a hydrogen evolution reaction (HER) by splitting water at the suitable overpotential is a great alternative to solving the problems of environmental pollution and the energy crisis. Molybdenum sulfide (MoS2) has attracted extensive attention as one of the most promising catalytic materials for HER. In this work, we design a facile method to in situ grow gold nanoparticles (AuNPs) on MoS2. Different numbers of AuNPs with MoS2 are used to find the best catalytic activity. Due to the larger active surface area and higher conductivity of the Au-MoS2 composites, all the Au-MoS2 composites exhibit more enhanced HER electroactivity than pure MoS2. In brief, the new material architecture exhibits optimized HER activity with a low onset overpotential of 0.12 V, low Tafel slope of 0.163 V·dec-1, and an excellent stability in acidic solution.
|
Received: 26 October 2017
Revised: 13 March 2018
Accepted manuscript online:
|
PACS:
|
81.07.Bc
|
(Nanocrystalline materials)
|
|
81.10.Dn
|
(Growth from solutions)
|
|
81.16.Dn
|
(Self-assembly)
|
|
82.30.Rs
|
(Hydrogen bonding, hydrophilic effects)
|
|
Fund: Project supported by the National Basic Research Program,China (Grant Nos.2016YFA0202300 and 2016YFA0202302),the National Natural Science Foundation of China (Grant Nos.61527817,61335006,and 61378073),and the Beijing Municipal Science and Technology Committee,China (Grant No.Z151100003315006). |
Corresponding Authors:
Xuan Zhao, Da-Wei He, Yong-Sheng Wang
E-mail: 983682235@qq.com;dwhe@bjtu.edu.cn;yshwang@bjtu.edu.cn
|
Cite this article:
Xuan Zhao(赵宣), Da-Wei He(何大伟), Yong-Sheng Wang(王永生), Chen Fu(付晨) In situ growth of different numbers of gold nanoparticles on MoS2 with enhanced electrocatalytic activity for hydrogen evolution reaction 2018 Chin. Phys. B 27 068103
|
[1] |
Zhang Y, Yan J, Ren X, Pang L, Chen H and Liu S 2017 International Journal of Hydrogen Energy 42 5472
|
[2] |
Jin J, Zhu Y, Liu Y, Li Y, Peng W, Zhang G, Zhang F and Fan X 2017 International Journal of Hydrogen Energy 42 3947
|
[3] |
Mo Q, Yao Y, Liu B, Peng L, Yan H, Hou Z, Wang J and Lin Y 2017 Mater. Chem. Phys. 193 298
|
[4] |
Yang L, Zhu X, Xiong S, Wu X, Shan Y and Chu PK 2016 ACS Appl. Mater. Interfaces 8 13966
|
[5] |
Zhang R, Li X, Zhang L, Lin S and Zhu H 2016 Adv. Sci. (Weinh) 3 1600208
|
[6] |
Li A, Hu Y, Yu M, Liu X and Li M 2017 International Journal of Hydrogen Energy 42 9419
|
[7] |
Xie J and Xie Y 2015 ChemCatChem 7 2568
|
[8] |
Zhao X, Ma X, Sun J, Li D and Yang X 2016 ACS Nano 10 2159
|
[9] |
Zhou H, Yu F, Sun J, He R, Wang Y, Guo CF, Wang F, Lan Y, Ren Z and Chen S 2016 J. Mater. Chem. A 4 9472
|
[10] |
Li P, Yang Z, Shen J, Nie H, Cai Q, Li L, Ge M, Gu C, Chen X, Yang K, Zhang L, Chen Y and Huang S 2016 ACS Appl. Mater. Interfaces 8 3543
|
[11] |
Pu Z, Liu Q, Asiri AM, Obaid AY and Sun X 2014 Electrochimica Acta 134 8
|
[12] |
Zhang Q, Bai H, Zhang Q, Ma Q, Li Y, Wan C and Xi G 2016 Nano Res. 9 3038
|
[13] |
Man Li Q M, Wei Zi, Xiaojing Liu, Xuejie Zhu and Shengzhong (Frank) Liu 2015 Science Adv. 1
|
[14] |
Xing Z, Liu Q, Asiri AM and Sun X 2014 Adv. Mater. 26 5702
|
[15] |
Chen L, Yang W, Liu X and Jia J 2017 International Journal of Hydrogen Energy 42 12246
|
[16] |
Khan M, Yousaf AB, Chen M, Wei C, Wu X, Huang N, Qi Z and Li L 2016 Nano Res. 9 837
|
[17] |
Liu Y R, Li X, Han G Q, Dong B, Hu W H, Shang X, Chai Y M, Liu Y Q and Liu C G 2017 International Journal of Hydrogen Energy 42 2054
|
[18] |
Dai X, Du K, Li Z, Liu M, Ma Y, Sun H, Zhang X and Yang Y 2015 ACS Appl. Mater. Interfaces 7 27242
|
[19] |
Sun X, Dai J, Guo Y, Wu C, Hu F, Zhao J, Zeng X and Xie Y 2014 Nanoscale 6 8359
|
[20] |
Yang J, Wang K, Zhu J, Zhang C and Liu T 2016 ACS Appl. Mater. Interfaces 8 31702
|
[21] |
Guo B, Yu K, Li H, Song H, Zhang Y, Lei X, Fu H, Tan Y and Zhu Z 2016 ACS Appl. Mater. Interfaces 8 5517
|
[22] |
Shen X, Xia X, Ye W, Du Y and Wang C 2016 J. Solid State Electrochem. 21 409
|
[23] |
Xie J, Zhang H, Li S, Wang R, Sun X, Zhou M, Zhou J, Lou X W and Xie Y 2013 Adv. Mater. 25 5807
|
[24] |
Deng J, Li H, Wang S, Ding D, Chen M, Liu C, Tian Z, Novoselov K S, Ma C, Deng D and Bao X 2017 Nat. Commun. 8 14430
|
[25] |
Xiao Z, Song J, Ferry D K, Ducharme S and Hong X 2017 Phys. Rev. Lett. 118 236801
|
[26] |
Chua X J and Pumera M 2017 Phys. Chem. Chem. Phys. 19 6610
|
[27] |
Kibsgaard J, Chen Z, Reinecke B N and Jaramillo T F 2012 Nat. Mater. 11 963
|
[28] |
Li Y, Wang H, Xie L, Liang Y, Hong G and Dai H 2011 J. Am. Chem. Soc. 133 7296
|
[29] |
Voiry D, Salehi M, Silva R, Fujita T, Chen M, Asefa T, Shenoy V B, Eda G and Chhowalla M 2013 Nano Lett. 13 6222
|
[30] |
Berit Hinnemann P G M, Jacob Bonde, Kristina P Jφrgensen, Jane H Nielsen, Sebastian Horch, Ib Chorkendorff, and Jens K Nφrskov 2005 J. Am. Chem. Soc. 127 5308
|
[31] |
Thomas F Jaramillo K P J, Jacob Bonde, Jane H. Nielsen, Sebastian Horch, Ib Chorkendorff 2007 Science 317 100.
|
[32] |
Smith A J, Chang Y H, Raidongia K, Chen T Y, Li L J and Huang J 2014 Adv. Energy Mater. 4 1400398
|
[33] |
Huang X, Zeng Z, Bao S, Wang M, Qi X, Fan Z and Zhang H 2013 Mol. Theor. 4 1444
|
[34] |
Wu X, Guo S and Zhang J 2015 Chem. Commun. 51 6318
|
[35] |
Lavie A, Yadgarov L, Houben L, Popovitz-Biro R, Shaul T E, Nagler A, Suchowski H and Tenne R 2017 Nanotechnology 28 24LT03
|
[36] |
Chen Y, Peng W C and Li X Y 2017 Nanotechnology 28 205603
|
[37] |
Xiao C, Liu J, Yang A, Zhao H, He Y, Li X and Yuan Z 2015 Microchimica Acta 182 1501
|
[38] |
Zhao X, He D, Wang Y, Hu Y and Fu C 2016 Chem. Phys. Lett. 647 165
|
[39] |
Li D, Xiao Z, Golgir H R, Jiang L, Singh V R, Keramatnejad K, Smith K E, Hong X, Jiang L, Silvain J F and Lu Y 2017 Adv. Electron. Mater. 3 1600335
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|