Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(5): 058701    DOI: 10.1088/1674-1056/27/5/058701
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Theoretical investigation of tunable polarized broadband terahertz radiation from magnetized gas plasma

Xin-Yang Gu(顾新杨)1, Jin-Song Liu(刘劲松)1, Zhen-Gang Yang(杨振刚)2, Sheng-Lie Wang(汪盛烈)2, Ke-Jia Wang(王可嘉)1
1 Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China;
2 School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China
Abstract  

The mechanism of terahertz (THz) pulse generation with a static magnetic field imposed on a gas plasma is theoretically investigated. The investigation demonstrates that the static magnetic field alters the electron motion during the optical field ionization of gas, leading to a two-dimensional asymmetric acceleration process of the ionized electrons. Simulation results reveal that elliptically or circularly polarized broadband THz radiation can be generated with an external static magnetic field imposed along the propagation direction of the two-color laser. The polarization of the THz radiation can be tuned by the strength of the external static magnetic field.

Keywords:  terahertz      plasma      magnetic field      polarization  
Received:  16 November 2017      Revised:  26 February 2018      Accepted manuscript online: 
PACS:  87.50.U-  
  52.25.Jm (Ionization of plasmas)  
  52.38.Fz (Laser-induced magnetic fields in plasmas)  
  95.30.Gv (Radiation mechanisms; polarization)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos.11574105,and 61475054) and the Fundamental Research Funds for the Central Universities,China (Grant No.2017KFYXJJ029).

Corresponding Authors:  Ke-Jia Wang     E-mail:  wkjtode@sina.com

Cite this article: 

Xin-Yang Gu(顾新杨), Jin-Song Liu(刘劲松), Zhen-Gang Yang(杨振刚), Sheng-Lie Wang(汪盛烈), Ke-Jia Wang(王可嘉) Theoretical investigation of tunable polarized broadband terahertz radiation from magnetized gas plasma 2018 Chin. Phys. B 27 058701

[1] Hamster H, Sullivan A, Gordon S, White W and Falcone R W 1993 Phys. Rev. Lett. 71 2725
[2] Wang T J, Marceau C, Chen Y, Yuan S, Théberge F, Chateauneuf M, Dubois J and Chin S L 2010 Appl. Phys. Lett. 96 211113
[3] Thomson M D, Kreş M, Löffler T and Roskos H G 2007 Laser Photon. Rev. 1 349
[4] Dai J, Liu J and Zhang X C 2011 IEEE J. Sel. Top. Quant. Electron. 17 183
[5] Oh T I, Yoo Y J, You Y S and Kim K Y 2014 Appl. Phys. Lett. 105 041103
[6] Matsubara E, Nagai M and Ashida M 2012 Appl. Phys. Lett. 101 011105
[7] Cook D J and Hochstrasser R M 2000 Opt. Lett. 25 1210
[8] Clough B, Dai J and Zhang X C 2012 Mater. Today 15 50
[9] Kim K Y, Taylor A J, Glownia J H and Rodriguez G 2008 Nat. Photon. 2 605
[10] Andreeva V A, Kosareva O G, Panov N A, Shipilo D E, Solyankin P M, Esaulkov M N and Chin S L 2016 Phys. Rev. Lett. 116 063902
[11] Kim K Y, Glownia J H, Taylor A J and Rodriguez G 2007 Opt. Express 15 4577
[12] de Alaiza Martínez P G, Babushkin I, Bergé L, Skupin S, Cabrera-Granado E, Köhler C and Herrmann J 2015 Phys. Rev. Lett. 114 183901
[13] Wang C L, Yang Z G, Liu J S, Wang S L and Wang K J 2015 Chin. Phys. B 24 088703
[14] You Y, Oh T and Kim K Y 2013 Opt. Lett. 38 1034
[15] Lu X and Zhang X C 2012 Phys. Rev. Lett. 108 123903
[16] Wang H G, Li N, Bai Y, Liu P, Wang Z S and Liu C P 2017 Opt. Express 25 30987
[17] Wang W M, Gibbon P, Sheng Z M and Li Y T 2015 Phys. Rev. Lett. 114 253901
[18] Sims J, Baca A and Boebinger G 2000 IEEE T. Appl. Supercon. 10 510
[19] Zherlitsyn S, Bianchi A D and Herrmannsdoerfer T 2006 IEEE T. Appl. Supercon. 16 1660
[20] Singleton J, Mielke C H, Migliori A, Boebinger G S and Lacerda A H 2004 Physica B 346 614
[21] Takeyama S and Kojima E 2011 J. Phys. D:Appl. Phys. 44 425003
[22] Bykov A I, Dolotenko M I, Kolokolchikov N P, Selemir V D and Tatsenko O M 2001 Physica B 294 574
[23] Santos J J, Bailly-Grandvaux M, Giuffrida L, et al. 2015 New J. Phys. 17 083051
[24] Law K F F, Bailly-Grandvaux M, Morace A, Sakata S, Matsuo K, Kojima S, Lee S, Vaisseau X, Arikawa Y, Yogo A, Kondo K, Zhang Z, Bellei C, Santos J J, Fujioka S and Azechi H 2016 Appl. Phys. Lett. 108 091104
[25] Corkum P B, Burnett N H and Brunel F 1989 Phys. Rev. Lett. 62 1259
[1] Polarization Raman spectra of graphene nanoribbons
Wangwei Xu(许望伟), Shijie Sun(孙诗杰), Muzi Yang(杨慕紫), Zhenliang Hao(郝振亮), Lei Gao(高蕾), Jianchen Lu(卢建臣), Jiasen Zhu(朱嘉森), Jian Chen(陈建), and Jinming Cai(蔡金明). Chin. Phys. B, 2023, 32(4): 046803.
[2] Super-resolution reconstruction algorithm for terahertz imaging below diffraction limit
Ying Wang(王莹), Feng Qi(祁峰), Zi-Xu Zhang(张子旭), and Jin-Kuan Wang(汪晋宽). Chin. Phys. B, 2023, 32(3): 038702.
[3] Bidirectional visible light absorber based on nanodisk arrays
Qi Wang(王琦), Fei-Fan Zhu(朱非凡), Rui Li(李瑞), Shi-Jie Zhang(张世杰), and Da-Wei Zhang(张大伟). Chin. Phys. B, 2023, 32(3): 030205.
[4] Quantum control of ultrafast magnetic field in H32+ molecules by tricircular polarized laser pulses
Qing-Yun Xu(徐清芸), Yong-Lin He(何永林), Zhi-Jie Yang(杨志杰), Zhi-Xian Lei(雷志仙),Shu-Juan Yan(闫淑娟), Xue-Shen Liu(刘学深), and Jing Guo(郭静). Chin. Phys. B, 2023, 32(3): 033202.
[5] A kind of multiwavelength erbium-doped fiber laser based on Lyot filter
Zhehai Zhou(周哲海), Jingyi Wu(吴婧仪), Kunlong Min(闵昆龙), Shuang Zhao(赵爽), and Huiyu Li(李慧宇). Chin. Phys. B, 2023, 32(3): 034205.
[6] Atomic optical spatial mode extractor for vector beams based on polarization-dependent absorption
Hong Chang(常虹), Xin Yang(杨欣), Jinwen Wang(王金文), Yan Ma(马燕), Xinqi Yang(杨鑫琪), Mingtao Cao(曹明涛), Xiaofei Zhang(张晓斐), Hong Gao(高宏), Ruifang Dong(董瑞芳), and Shougang Zhang(张首刚). Chin. Phys. B, 2023, 32(3): 034207.
[7] Ferroelectricity induced by the absorption of water molecules on double helix SnIP
Dan Liu(刘聃), Ran Wei(魏冉), Lin Han(韩琳), Chen Zhu(朱琛), and Shuai Dong(董帅). Chin. Phys. B, 2023, 32(3): 037701.
[8] Intense low-noise terahertz generation by relativistic laser irradiating near-critical-density plasma
Shijie Zhang(张世杰), Weimin Zhou(周维民), Yan Yin(银燕), Debin Zou(邹德滨), Na Zhao(赵娜), Duan Xie(谢端), and Hongbin Zhuo(卓红斌). Chin. Phys. B, 2023, 32(3): 035201.
[9] Spin- and valley-polarized Goos-Hänchen-like shift in ferromagnetic mass graphene junction with circularly polarized light
Mei-Rong Liu(刘美荣), Zheng-Fang Liu(刘正方), Ruo-Long Zhang(张若龙), Xian-Bo Xiao(肖贤波), and Qing-Ping Wu(伍清萍). Chin. Phys. B, 2023, 32(3): 037301.
[10] A band-pass frequency selective surface with polarization rotation
Bao-Qin Lin(林宝勤), Wen-Zhun Huang(黄文准), Jian-Xin Guo(郭建新), Zhe Liu(刘哲), Yan-Wen Wang(王衍文), and Hong-Jun Ye(叶红军). Chin. Phys. B, 2023, 32(2): 024204.
[11] A simulation study of polarization characteristics of ultrathin CsPbBr3 nanowires with different cross-section shapes and sizes
Kang Yang(杨康), Huiqing Hu(胡回清), Jiaojiao Wang(王娇娇), Lingling Deng(邓玲玲), Yunqing Lu(陆云清), and Jin Wang(王瑾). Chin. Phys. B, 2023, 32(2): 024214.
[12] High efficiency of broadband transmissive metasurface terahertz polarization converter
Qiangguo Zhou(周强国), Yang Li(李洋), Yongzhen Li(李永振), Niangjuan Yao(姚娘娟), and Zhiming Huang(黄志明). Chin. Phys. B, 2023, 32(2): 024201.
[13] Multi-band polarization switch based on magnetic fluid filled dual-core photonic crystal fiber
Lianzhen Zhang(张连震), Xuedian Zhang(张学典), Xiantong Yu(俞宪同), Xuejing Liu(刘学静), Jun Zhou(周军), Min Chang(常敏), Na Yang(杨娜), and Jia Du(杜嘉). Chin. Phys. B, 2023, 32(2): 024205.
[14] First-principles prediction of quantum anomalous Hall effect in two-dimensional Co2Te lattice
Yuan-Shuo Liu(刘元硕), Hao Sun(孙浩), Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(2): 027101.
[15] Ignition dynamics of radio frequency discharge in atmospheric pressure cascade glow discharge
Ya-Rong Zhang(张亚容), Qian-Han Han(韩乾翰), Jun-Lin Fang(方骏林), Ying Guo(郭颖), and Jian-Jun Shi(石建军). Chin. Phys. B, 2023, 32(2): 025201.
No Suggested Reading articles found!