INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Prev
Next
|
|
|
Theoretical investigation of tunable polarized broadband terahertz radiation from magnetized gas plasma |
Xin-Yang Gu(顾新杨)1, Jin-Song Liu(刘劲松)1, Zhen-Gang Yang(杨振刚)2, Sheng-Lie Wang(汪盛烈)2, Ke-Jia Wang(王可嘉)1 |
1 Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China;
2 School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China |
|
|
Abstract The mechanism of terahertz (THz) pulse generation with a static magnetic field imposed on a gas plasma is theoretically investigated. The investigation demonstrates that the static magnetic field alters the electron motion during the optical field ionization of gas, leading to a two-dimensional asymmetric acceleration process of the ionized electrons. Simulation results reveal that elliptically or circularly polarized broadband THz radiation can be generated with an external static magnetic field imposed along the propagation direction of the two-color laser. The polarization of the THz radiation can be tuned by the strength of the external static magnetic field.
|
Received: 16 November 2017
Revised: 26 February 2018
Accepted manuscript online:
|
PACS:
|
87.50.U-
|
|
|
52.25.Jm
|
(Ionization of plasmas)
|
|
52.38.Fz
|
(Laser-induced magnetic fields in plasmas)
|
|
95.30.Gv
|
(Radiation mechanisms; polarization)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos.11574105,and 61475054) and the Fundamental Research Funds for the Central Universities,China (Grant No.2017KFYXJJ029). |
Corresponding Authors:
Ke-Jia Wang
E-mail: wkjtode@sina.com
|
Cite this article:
Xin-Yang Gu(顾新杨), Jin-Song Liu(刘劲松), Zhen-Gang Yang(杨振刚), Sheng-Lie Wang(汪盛烈), Ke-Jia Wang(王可嘉) Theoretical investigation of tunable polarized broadband terahertz radiation from magnetized gas plasma 2018 Chin. Phys. B 27 058701
|
[1] |
Hamster H, Sullivan A, Gordon S, White W and Falcone R W 1993 Phys. Rev. Lett. 71 2725
|
[2] |
Wang T J, Marceau C, Chen Y, Yuan S, Théberge F, Chateauneuf M, Dubois J and Chin S L 2010 Appl. Phys. Lett. 96 211113
|
[3] |
Thomson M D, Kreş M, Löffler T and Roskos H G 2007 Laser Photon. Rev. 1 349
|
[4] |
Dai J, Liu J and Zhang X C 2011 IEEE J. Sel. Top. Quant. Electron. 17 183
|
[5] |
Oh T I, Yoo Y J, You Y S and Kim K Y 2014 Appl. Phys. Lett. 105 041103
|
[6] |
Matsubara E, Nagai M and Ashida M 2012 Appl. Phys. Lett. 101 011105
|
[7] |
Cook D J and Hochstrasser R M 2000 Opt. Lett. 25 1210
|
[8] |
Clough B, Dai J and Zhang X C 2012 Mater. Today 15 50
|
[9] |
Kim K Y, Taylor A J, Glownia J H and Rodriguez G 2008 Nat. Photon. 2 605
|
[10] |
Andreeva V A, Kosareva O G, Panov N A, Shipilo D E, Solyankin P M, Esaulkov M N and Chin S L 2016 Phys. Rev. Lett. 116 063902
|
[11] |
Kim K Y, Glownia J H, Taylor A J and Rodriguez G 2007 Opt. Express 15 4577
|
[12] |
de Alaiza Martínez P G, Babushkin I, Bergé L, Skupin S, Cabrera-Granado E, Köhler C and Herrmann J 2015 Phys. Rev. Lett. 114 183901
|
[13] |
Wang C L, Yang Z G, Liu J S, Wang S L and Wang K J 2015 Chin. Phys. B 24 088703
|
[14] |
You Y, Oh T and Kim K Y 2013 Opt. Lett. 38 1034
|
[15] |
Lu X and Zhang X C 2012 Phys. Rev. Lett. 108 123903
|
[16] |
Wang H G, Li N, Bai Y, Liu P, Wang Z S and Liu C P 2017 Opt. Express 25 30987
|
[17] |
Wang W M, Gibbon P, Sheng Z M and Li Y T 2015 Phys. Rev. Lett. 114 253901
|
[18] |
Sims J, Baca A and Boebinger G 2000 IEEE T. Appl. Supercon. 10 510
|
[19] |
Zherlitsyn S, Bianchi A D and Herrmannsdoerfer T 2006 IEEE T. Appl. Supercon. 16 1660
|
[20] |
Singleton J, Mielke C H, Migliori A, Boebinger G S and Lacerda A H 2004 Physica B 346 614
|
[21] |
Takeyama S and Kojima E 2011 J. Phys. D:Appl. Phys. 44 425003
|
[22] |
Bykov A I, Dolotenko M I, Kolokolchikov N P, Selemir V D and Tatsenko O M 2001 Physica B 294 574
|
[23] |
Santos J J, Bailly-Grandvaux M, Giuffrida L, et al. 2015 New J. Phys. 17 083051
|
[24] |
Law K F F, Bailly-Grandvaux M, Morace A, Sakata S, Matsuo K, Kojima S, Lee S, Vaisseau X, Arikawa Y, Yogo A, Kondo K, Zhang Z, Bellei C, Santos J J, Fujioka S and Azechi H 2016 Appl. Phys. Lett. 108 091104
|
[25] |
Corkum P B, Burnett N H and Brunel F 1989 Phys. Rev. Lett. 62 1259
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|