Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(5): 058202    DOI: 10.1088/1674-1056/ab7ea1
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Relationship between ESIPT properties and antioxidant activities of 5-hydroxyflavone derivates

Chaofan Sun(孙朝范), Bifa Cao(曹必发), Hang Yin(尹航), Ying Shi(石英)
Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China
Abstract  It is of great significance to study the relationship between the excited state intramolecular proton transfer (ESIPT) properties and antioxidant activities of compounds in the field of life sciences. In this work, two novel compounds 5HF-OMe and 5HF-NH2 are designed through introducing a methoxy- and amino-group into the structure of 5-hydroxyflavone (5HF) respectively. The relationship between the ESIPT reaction and antioxidant activities of the three compounds is studied via the density functional theory (DFT) and time-dependent DFT (TD-DFT) methods. The calculated potential energy curves suggest that the rate of ESIPT reaction will gradually slow down from 5HF to 5HF-OMe and 5HF-NH2. In addition, the antioxidant activities of the three compounds gradually enhance from 5HF to 5HF-OMe and 5HF-NH2, which can be seen from the calculated energy gaps and ionization potential values. Interestingly, the above results imply that the rate of ESIPT reaction has a negative relationship with the antioxidant activities of the compounds, i.e., the slower rate of ESIPT reaction will reflect the higher antioxidant activity of the compound, which will provide valuable reference for detecting the antioxidant activity of compound via the photophysical method.
Keywords:  5-hydroxyflavone      excited state intramolecular proton transfer      antioxidant activity      density functional theory  
Received:  20 February 2020      Revised:  04 March 2020      Accepted manuscript online: 
PACS:  82.39.Jn (Charge (electron, proton) transfer in biological systems)  
  31.15.ee (Time-dependent density functional theory)  
  87.15.ht (Ultrafast dynamics; charge transfer)  
Fund: Project supported by the National Basic Research Program of China (Grant No. 2019YFA0307701), the National Natural Science Foundation of China (Grant No. 11874180), and the Science and Technology Development Project of Jilin Province of China (Grant No. 20190103101JH).
Corresponding Authors:  Ying Shi     E-mail:  shi_ying@jlu.edu.cn

Cite this article: 

Chaofan Sun(孙朝范), Bifa Cao(曹必发), Hang Yin(尹航), Ying Shi(石英) Relationship between ESIPT properties and antioxidant activities of 5-hydroxyflavone derivates 2020 Chin. Phys. B 29 058202

[1] Huang P, Feng L, Oldham E A, Keating M J and Plunkett W 2000 Nature 407 390
[2] Pisoschi A M and Pop A 2015 Eur. J. Med. Chem. 97 55
[3] Yang X Y, Li Y, Li Y D, Ren X M, Zhang X Y, Hu D, Gao Y H, Xing Y W and Shang H C 2017 Front. Physiol. 8 600
[4] Muir S R, Collins G J, Robinson S, Hughes S, Bovy A, De Vos C H R, van Tunen A J and Verhoeyen M E 2001 Nat. Biotechnol. 19 470
[5] Paz M, Gullon P, Barroso M F, Carvalho A P, Domingues V F, Gomes A M, Becker H, Longhinotti E and Delerue-Matos C 2015 Food Chem. 172 462
[6] Lee Y M, Yoon Y, Yoon H, Park H M, Song S and Yeum K J 2017 Nutrients 9 1089
[7] Detsi A, Majdalani M, Kontogiorgis C A, Hadjipavlou-Litina D and Kefalas P 2009 Bioorg. Med. Chem. 17 8073
[8] Leopoldini M, Russo N and Toscano M 2011 Food Chem. 125 288
[9] Sandoval-Yanez C, Mascayano C and Martinez-Araya J I 2018 Arab. J. Chem. 11 554
[10] Magnani L, Gaydou E M and Hubaud J C 2000 Anal. Chim. Acta 411 209
[11] Norikane Y, Itoh H and Arai T 2004 J. Photochem. Photobiol. A 161 163
[12] Falkovskaia E, Sengupta P K and Kasha M 1998 Chem. Phys. Lett. 297 109
[13] Abo Markeb A and Abo El-Maali N 2014 Talanta 119 417
[14] Simkovitch R and Huppert D 2015 J. Phys. Chem. B 119 10244
[15] Chou P T, Chen Y C, Yu W S and Cheng Y M 2001 Chem. Phys. Lett. 340 89
[16] Ash S, De S P, Pyne S and Misra A 2010 J. Mol. Model. 16 831
[17] Mazzone G, Malaj N, Galano A, Russo N and Toscano M 2015 RSC Adv. 5 565
[18] Yang Y, Zhao J and Li Y 2016 Sci. Rep. 6 32152
[19] Yang Y, Chen Y, Zhao Y, Shi W, Ma F and Li Y 2019 J. Lumin. 206 326
[20] Wang Y S, Jia M, Zhang Q L, Song X Y and Yang D P 2019 Chin. Phys. B 28 103105
[21] Yang Y, Ding Y, Shi W, Ma F and Li Y 2020 J. Lumin. 218 116836
[22] Li Y Z, Xu B B, Song P, Ma F C and Sun M T 2017 J. Phys. Chem. C 121 12546
[23] Wang X F, Li Y Z, Song P, Ma F C and Yang Y H 2019 J. Phys. Chem. A 123 7401
[24] Shi X L, Yang Y H, Wang L H and Li Y Z 2019 J. Phys. Chem. C 123 4007
[25] Sun M T 2006 J. Chem. Phys. 124 054903
[26] Mu X, Wang J and Sun M 2019 J. Phys. Chem. C 123 14132
[27] Mu X, Zong H, Zhu L and Sun M 2020 J. Phys. Chem. C 124 2319
[28] Mu X, Wang X, Quan J and Sun M 2020 J. Phys. Chem. C 124 4968
[29] Stratmann R E, Scuseria G E and Frisch M J 1998 J. Chem. Phys. 109 8218
[30] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[31] Cossi M, Scalmani G, Rega N and Barone V 2002 J. Chem. Phys. 117 43
[32] Scalmani G and Frisch M J 2010 J. Chem. Phys. 132 114110
[33] Frisch M J, et al. 2009 Gaussian 09 Revision B01 (Gaussian, Inc., Wallingford)
[34] Parr R G, Szentpály L V and Liu S 1999 J. Am. Chem. Soc. 121 1922
[35] Sadasivam K and Kumaresan R 2011 Spectrochim. Acta Part. A 79 282
[36] Sun C, Li Y, Li B, Han J, Zhou Q, Yin H and Shi Y 2020 J. Mol. Liq. 297 111937
[37] Jeevitha D, Sadasivam K, Praveena R and Jayaprakasam R 2016 J. Mol. Struct. 1120 15
[38] Liu S, Ma Y Z, Yang Y F, Liu S S, Li Y Q and Song Y Z 2018 Chin. Phys. B 27 023103
[39] Peng L H, Liu S, Xu S Y, Chen L, Shan Y H, Wei W, Liang W Q and Gao J Q 2013 Phytomedicine 20 1082
[40] Valle J C d 2006 J. Chem. Phys. 124 104506
[41] Erzina D R, Zamilatskov I A, Kurochkina N M, Ponomarev G V and Tafeenko V A 2017 Acta Crystallogr. Sect. C: Struct. Chem. 73 68
[42] Kandasamy S and Rathinam K 2011 Mol. Phys. 109 839
[43] An C B, Li D, Lang R, Bu Y Z, Wang S, Zhang E H, Wang P, Ai X C, Zhang J P and Skibsted L H 2011 J. Agric. Food Chem. 59 12652
[44] Alasalvar C, Guder A, Gokce H, Kastas C A and Celik R C 2017 J. Mol. Struct. 1133 37
[45] Zhou M, Zhao J F, Cui Y L, Wang Q Y, Dai Y M, Song P and Xia L X 2015 J. Lumin. 161 1
[46] Wang Q, Gao F, Li H R and Zhang S T 2010 Chin. J. Chem. 28 901
[47] Wang Z M, Zhou F, Wang J, Zhao Z J, Qin A J, Yu Z Q and Tang B Z 2018 Sci. Chin.: Chem. 61 76
[48] Kar R, Chandrakumar K R S and Pal S 2007 J. Phys. Chem. A 111 375
[49] Rajan V K, Hasna C K and Muraleedharan K 2018 Food Chem. 262 184
[50] Pasha F A, Cho S J, Beg Y and Tripathi Y B 2007 Med. Chem. Res. 16 408
[51] Murakami Y, Ishii H, Takada N, Tanaka S, Machin M, Ito S and Fujisawa S 2008 Anticancer Res. 28 699
[52] Vargas-Sanchez R D, Mendoza-Wilson A M, Balandran-Quintana R R, Torrescano-Urrutia G R and Sanchez-Escalante A 2015 Comput. Theor. Chem. 1058 21
[53] Lone S H, Jameel S, Bhat M A, Lone R A, Butcher R J and Bhat K A 2018 RSC Adv. 8 8259
[54] Sun C, Zhao H, Liu X, Yin H and Shi Y 2018 Org. Chem. Front. 5 3435
[55] Sutradhar T and Misra A 2018 J. Phys. Chem. A 122 4111
[1] Predicting novel atomic structure of the lowest-energy FenP13-n(n=0-13) clusters: A new parameter for characterizing chemical stability
Yuanqi Jiang(蒋元祺), Ping Peng(彭平). Chin. Phys. B, 2023, 32(4): 047102.
[2] Ferroelectricity induced by the absorption of water molecules on double helix SnIP
Dan Liu(刘聃), Ran Wei(魏冉), Lin Han(韩琳), Chen Zhu(朱琛), and Shuai Dong(董帅). Chin. Phys. B, 2023, 32(3): 037701.
[3] A theoretical study of fragmentation dynamics of water dimer by proton impact
Zhi-Ping Wang(王志萍), Xue-Fen Xu(许雪芬), Feng-Shou Zhang(张丰收), and Xu Wang(王旭). Chin. Phys. B, 2023, 32(3): 033401.
[4] Plasmonic hybridization properties in polyenes octatetraene molecules based on theoretical computation
Nan Gao(高楠), Guodong Zhu(朱国栋), Yingzhou Huang(黄映洲), and Yurui Fang(方蔚瑞). Chin. Phys. B, 2023, 32(3): 037102.
[5] Effects of π-conjugation-substitution on ESIPT process for oxazoline-substituted hydroxyfluorenes
Di Wang(汪迪), Qiao Zhou(周悄), Qiang Wei(魏强), and Peng Song(宋朋). Chin. Phys. B, 2023, 32(2): 028201.
[6] High-order harmonic generation of the cyclo[18]carbon molecule irradiated by circularly polarized laser pulse
Shu-Shan Zhou(周书山), Yu-Jun Yang(杨玉军), Yang Yang(杨扬), Ming-Yue Suo(索明月), Dong-Yuan Li(李东垣), Yue Qiao(乔月), Hai-Ying Yuan(袁海颖), Wen-Di Lan(蓝文迪), and Mu-Hong Hu(胡木宏). Chin. Phys. B, 2023, 32(1): 013201.
[7] First-principles study of a new BP2 two-dimensional material
Zhizheng Gu(顾志政), Shuang Yu(于爽), Zhirong Xu(徐知荣), Qi Wang(王琪), Tianxiang Duan(段天祥), Xinxin Wang(王鑫鑫), Shijie Liu(刘世杰), Hui Wang(王辉), and Hui Du(杜慧). Chin. Phys. B, 2022, 31(8): 086107.
[8] Adaptive semi-empirical model for non-contact atomic force microscopy
Xi Chen(陈曦), Jun-Kai Tong(童君开), and Zhi-Xin Hu(胡智鑫). Chin. Phys. B, 2022, 31(8): 088202.
[9] Collision site effect on the radiation dynamics of cytosine induced by proton
Xu Wang(王旭), Zhi-Ping Wang(王志萍), Feng-Shou Zhang(张丰收), and Chao-Yi Qian (钱超义). Chin. Phys. B, 2022, 31(6): 063401.
[10] First principles investigation on Li or Sn codoped hexagonal tungsten bronzes as the near-infrared shielding material
Bo-Shen Zhou(周博深), Hao-Ran Gao(高浩然), Yu-Chen Liu(刘雨辰), Zi-Mu Li(李子木),Yang-Yang Huang(黄阳阳), Fu-Chun Liu(刘福春), and Xiao-Chun Wang(王晓春). Chin. Phys. B, 2022, 31(5): 057804.
[11] Laser-induced fluorescence experimental spectroscopy and theoretical calculations of uranium monoxide
Xi-Lin Bai(白西林), Xue-Dong Zhang(张雪东), Fu-Qiang Zhang(张富强), and Timothy C Steimle. Chin. Phys. B, 2022, 31(5): 053301.
[12] Tunable electronic properties of GaS-SnS2 heterostructure by strain and electric field
Da-Hua Ren(任达华), Qiang Li(李强), Kai Qian(钱楷), and Xing-Yi Tan(谭兴毅). Chin. Phys. B, 2022, 31(4): 047102.
[13] Insights into the adsorption of water and oxygen on the cubic CsPbBr3 surfaces: A first-principles study
Xin Zhang(张鑫), Ruge Quhe(屈贺如歌), and Ming Lei(雷鸣). Chin. Phys. B, 2022, 31(4): 046401.
[14] Influence of intramolecular hydrogen bond formation sites on fluorescence mechanism
Hong-Bin Zhan(战鸿彬), Heng-Wei Zhang(张恒炜), Jun-Jie Jiang(江俊杰), Yi Wang(王一), Xu Fei(费旭), and Jing Tian(田晶). Chin. Phys. B, 2022, 31(3): 038201.
[15] Advances and challenges in DFT-based energy materials design
Jun Kang(康俊), Xie Zhang(张燮), and Su-Huai Wei(魏苏淮). Chin. Phys. B, 2022, 31(10): 107105.
No Suggested Reading articles found!