INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Prev
Next
|
|
|
Relationship between ESIPT properties and antioxidant activities of 5-hydroxyflavone derivates |
Chaofan Sun(孙朝范), Bifa Cao(曹必发), Hang Yin(尹航), Ying Shi(石英) |
Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China |
|
|
Abstract It is of great significance to study the relationship between the excited state intramolecular proton transfer (ESIPT) properties and antioxidant activities of compounds in the field of life sciences. In this work, two novel compounds 5HF-OMe and 5HF-NH2 are designed through introducing a methoxy- and amino-group into the structure of 5-hydroxyflavone (5HF) respectively. The relationship between the ESIPT reaction and antioxidant activities of the three compounds is studied via the density functional theory (DFT) and time-dependent DFT (TD-DFT) methods. The calculated potential energy curves suggest that the rate of ESIPT reaction will gradually slow down from 5HF to 5HF-OMe and 5HF-NH2. In addition, the antioxidant activities of the three compounds gradually enhance from 5HF to 5HF-OMe and 5HF-NH2, which can be seen from the calculated energy gaps and ionization potential values. Interestingly, the above results imply that the rate of ESIPT reaction has a negative relationship with the antioxidant activities of the compounds, i.e., the slower rate of ESIPT reaction will reflect the higher antioxidant activity of the compound, which will provide valuable reference for detecting the antioxidant activity of compound via the photophysical method.
|
Received: 20 February 2020
Revised: 04 March 2020
Accepted manuscript online:
|
PACS:
|
82.39.Jn
|
(Charge (electron, proton) transfer in biological systems)
|
|
31.15.ee
|
(Time-dependent density functional theory)
|
|
87.15.ht
|
(Ultrafast dynamics; charge transfer)
|
|
Fund: Project supported by the National Basic Research Program of China (Grant No. 2019YFA0307701), the National Natural Science Foundation of China (Grant No. 11874180), and the Science and Technology Development Project of Jilin Province of China (Grant No. 20190103101JH). |
Corresponding Authors:
Ying Shi
E-mail: shi_ying@jlu.edu.cn
|
Cite this article:
Chaofan Sun(孙朝范), Bifa Cao(曹必发), Hang Yin(尹航), Ying Shi(石英) Relationship between ESIPT properties and antioxidant activities of 5-hydroxyflavone derivates 2020 Chin. Phys. B 29 058202
|
[1] |
Huang P, Feng L, Oldham E A, Keating M J and Plunkett W 2000 Nature 407 390
|
[2] |
Pisoschi A M and Pop A 2015 Eur. J. Med. Chem. 97 55
|
[3] |
Yang X Y, Li Y, Li Y D, Ren X M, Zhang X Y, Hu D, Gao Y H, Xing Y W and Shang H C 2017 Front. Physiol. 8 600
|
[4] |
Muir S R, Collins G J, Robinson S, Hughes S, Bovy A, De Vos C H R, van Tunen A J and Verhoeyen M E 2001 Nat. Biotechnol. 19 470
|
[5] |
Paz M, Gullon P, Barroso M F, Carvalho A P, Domingues V F, Gomes A M, Becker H, Longhinotti E and Delerue-Matos C 2015 Food Chem. 172 462
|
[6] |
Lee Y M, Yoon Y, Yoon H, Park H M, Song S and Yeum K J 2017 Nutrients 9 1089
|
[7] |
Detsi A, Majdalani M, Kontogiorgis C A, Hadjipavlou-Litina D and Kefalas P 2009 Bioorg. Med. Chem. 17 8073
|
[8] |
Leopoldini M, Russo N and Toscano M 2011 Food Chem. 125 288
|
[9] |
Sandoval-Yanez C, Mascayano C and Martinez-Araya J I 2018 Arab. J. Chem. 11 554
|
[10] |
Magnani L, Gaydou E M and Hubaud J C 2000 Anal. Chim. Acta 411 209
|
[11] |
Norikane Y, Itoh H and Arai T 2004 J. Photochem. Photobiol. A 161 163
|
[12] |
Falkovskaia E, Sengupta P K and Kasha M 1998 Chem. Phys. Lett. 297 109
|
[13] |
Abo Markeb A and Abo El-Maali N 2014 Talanta 119 417
|
[14] |
Simkovitch R and Huppert D 2015 J. Phys. Chem. B 119 10244
|
[15] |
Chou P T, Chen Y C, Yu W S and Cheng Y M 2001 Chem. Phys. Lett. 340 89
|
[16] |
Ash S, De S P, Pyne S and Misra A 2010 J. Mol. Model. 16 831
|
[17] |
Mazzone G, Malaj N, Galano A, Russo N and Toscano M 2015 RSC Adv. 5 565
|
[18] |
Yang Y, Zhao J and Li Y 2016 Sci. Rep. 6 32152
|
[19] |
Yang Y, Chen Y, Zhao Y, Shi W, Ma F and Li Y 2019 J. Lumin. 206 326
|
[20] |
Wang Y S, Jia M, Zhang Q L, Song X Y and Yang D P 2019 Chin. Phys. B 28 103105
|
[21] |
Yang Y, Ding Y, Shi W, Ma F and Li Y 2020 J. Lumin. 218 116836
|
[22] |
Li Y Z, Xu B B, Song P, Ma F C and Sun M T 2017 J. Phys. Chem. C 121 12546
|
[23] |
Wang X F, Li Y Z, Song P, Ma F C and Yang Y H 2019 J. Phys. Chem. A 123 7401
|
[24] |
Shi X L, Yang Y H, Wang L H and Li Y Z 2019 J. Phys. Chem. C 123 4007
|
[25] |
Sun M T 2006 J. Chem. Phys. 124 054903
|
[26] |
Mu X, Wang J and Sun M 2019 J. Phys. Chem. C 123 14132
|
[27] |
Mu X, Zong H, Zhu L and Sun M 2020 J. Phys. Chem. C 124 2319
|
[28] |
Mu X, Wang X, Quan J and Sun M 2020 J. Phys. Chem. C 124 4968
|
[29] |
Stratmann R E, Scuseria G E and Frisch M J 1998 J. Chem. Phys. 109 8218
|
[30] |
Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
|
[31] |
Cossi M, Scalmani G, Rega N and Barone V 2002 J. Chem. Phys. 117 43
|
[32] |
Scalmani G and Frisch M J 2010 J. Chem. Phys. 132 114110
|
[33] |
Frisch M J, et al. 2009 Gaussian 09 Revision B01 (Gaussian, Inc., Wallingford)
|
[34] |
Parr R G, Szentpály L V and Liu S 1999 J. Am. Chem. Soc. 121 1922
|
[35] |
Sadasivam K and Kumaresan R 2011 Spectrochim. Acta Part. A 79 282
|
[36] |
Sun C, Li Y, Li B, Han J, Zhou Q, Yin H and Shi Y 2020 J. Mol. Liq. 297 111937
|
[37] |
Jeevitha D, Sadasivam K, Praveena R and Jayaprakasam R 2016 J. Mol. Struct. 1120 15
|
[38] |
Liu S, Ma Y Z, Yang Y F, Liu S S, Li Y Q and Song Y Z 2018 Chin. Phys. B 27 023103
|
[39] |
Peng L H, Liu S, Xu S Y, Chen L, Shan Y H, Wei W, Liang W Q and Gao J Q 2013 Phytomedicine 20 1082
|
[40] |
Valle J C d 2006 J. Chem. Phys. 124 104506
|
[41] |
Erzina D R, Zamilatskov I A, Kurochkina N M, Ponomarev G V and Tafeenko V A 2017 Acta Crystallogr. Sect. C: Struct. Chem. 73 68
|
[42] |
Kandasamy S and Rathinam K 2011 Mol. Phys. 109 839
|
[43] |
An C B, Li D, Lang R, Bu Y Z, Wang S, Zhang E H, Wang P, Ai X C, Zhang J P and Skibsted L H 2011 J. Agric. Food Chem. 59 12652
|
[44] |
Alasalvar C, Guder A, Gokce H, Kastas C A and Celik R C 2017 J. Mol. Struct. 1133 37
|
[45] |
Zhou M, Zhao J F, Cui Y L, Wang Q Y, Dai Y M, Song P and Xia L X 2015 J. Lumin. 161 1
|
[46] |
Wang Q, Gao F, Li H R and Zhang S T 2010 Chin. J. Chem. 28 901
|
[47] |
Wang Z M, Zhou F, Wang J, Zhao Z J, Qin A J, Yu Z Q and Tang B Z 2018 Sci. Chin.: Chem. 61 76
|
[48] |
Kar R, Chandrakumar K R S and Pal S 2007 J. Phys. Chem. A 111 375
|
[49] |
Rajan V K, Hasna C K and Muraleedharan K 2018 Food Chem. 262 184
|
[50] |
Pasha F A, Cho S J, Beg Y and Tripathi Y B 2007 Med. Chem. Res. 16 408
|
[51] |
Murakami Y, Ishii H, Takada N, Tanaka S, Machin M, Ito S and Fujisawa S 2008 Anticancer Res. 28 699
|
[52] |
Vargas-Sanchez R D, Mendoza-Wilson A M, Balandran-Quintana R R, Torrescano-Urrutia G R and Sanchez-Escalante A 2015 Comput. Theor. Chem. 1058 21
|
[53] |
Lone S H, Jameel S, Bhat M A, Lone R A, Butcher R J and Bhat K A 2018 RSC Adv. 8 8259
|
[54] |
Sun C, Zhao H, Liu X, Yin H and Shi Y 2018 Org. Chem. Front. 5 3435
|
[55] |
Sutradhar T and Misra A 2018 J. Phys. Chem. A 122 4111
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|