Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(3): 034207    DOI: 10.1088/1674-1056/27/3/034207
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Enhanced second harmonic generation in a two-dimensional optical micro-cavity

Jian-Jun Zhang(张建军), Hui-Fang Wang(王慧芳), Jun-Hua Hou(候俊华)
School of Physics and Information Science, Shanxi Normal University, Linfen 041004, China
Abstract  

We introduce a two-dimensional Bose-Einstein condensation model consisting of massive photon and photon-pair. Based on the new nonlinear model, the traditional process of second harmonics generation is reinvestigated. In order to describe the process, a new quantum phase, the harmonic phase, is introduced. The order parameter of the new physical phase is also given in this paper.

Keywords:  Bose-Einstein condensation      quantum phase transition      photon  
Received:  19 October 2017      Revised:  24 November 2017      Accepted manuscript online: 
PACS:  42.65.Sf (Dynamics of nonlinear optical systems; optical instabilities, optical chaos and complexity, and optical spatio-temporal dynamics)  
  05.30.Jp (Boson systems)  
  05.70.Fh (Phase transitions: general studies)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 11447207 and 11604193).

Corresponding Authors:  Jian-Jun Zhang     E-mail:  jjzhangphys@163.com

Cite this article: 

Jian-Jun Zhang(张建军), Hui-Fang Wang(王慧芳), Jun-Hua Hou(候俊华) Enhanced second harmonic generation in a two-dimensional optical micro-cavity 2018 Chin. Phys. B 27 034207

[1] Zou X Y, Wang L J and Mandel L 1991 Phys. Rev. Lett. 67 318
[2] Shi Y, Yu Z and Fan S 2015 Nature photonics 9 388
[3] Li W D, Feng Z F and Liu Y 2017 Chin. Phys. B 26 013401
[4] Picozzi A, Garnier J, Hansson T, Suret P, Randoux S, Millot G and Christodoulides D 2014 Phys. Rep. 542 1
[5] Cheng Z 2017 Chin. Phys. B 26 046701
[6] Leo F, Hansson T, Ricciardi I, Rosa M D, Coen S, Wabnitz S and Erkintalo M 2016 Phys. Rev. Lett. 116 033901
[7] Grinblat G, Li Y, Nielsen M P, Oulton R F and Maier S A 2016 Nano Lett. 16 4635
[8] Zhou J, Peatross J, Murnane M M, Kapteyn H C and Christov I P 1996 Phys. Rev. Lett. 76 752
[9] Pu Y, Grange R, Hsieh C L and Psaltis D 2010 Phys. Rev. Lett. 104 207402
[10] Mikhailov S A 2011 Phys. Rev. B 84 045432
[11] Leo F, Hansson T, Ricciardi I, Rosa M De, Coen S, Wabnitz S and Erkintalo M 2016 Phys. Rev. Lett. 116 033901
[12] Klaers J, Schmitt J, Vewinger F and Weitz M 2010 Nature 468 545
[13] Klaers J, Schmitt J, Damm T, Vewinger F and Weitz M 2012 Phys. Rev. Lett. 108 160403
[14] Kirton P and Keeling J 2013 Phys. Rev. Lett. 111 100404
[15] HAO Y J 2011 Chin. Phys. Lett. 28 070501
[16] Anderson M H, Ensher J R, Matthews M R, Wieman C E and Cornell E A 1995 Science 269 198
[17] Eisenstein J P and Macdonald A H 2004 Nature 432 691
[18] Balili R, Hartwell V, Snoke D, Pfeiffer L and West K 2007 Science 316 1007
[19] Nikuni T, Oshikawa M, Oosawa A, and Tanaka H 2000 Phys. Rev. Lett. 84 5868
[20] Moniri S M, Yavari H and Darsheshdar E 2016 Chin. Phys. B 25 0126701
[21] Chiao R Y and Boyce J 1999 Phys. Rev. A 60 4114
[22] Fischer B and Weill R 2012 Opt. Express 20 26704
[23] De Leeuw A W, Stoof H T C and Duine R A 2013 Phys. Rev. A 88 033829
[24] Chiocchetta A and Carusotto I 2014 Phys. Rev. A 90 023633
[25] Sob' yania D N 2013 Phys. Rev. E 88 022132
[26] Kirton P and Keeling J 2015 Phys. Rev. A 91 033826
[27] Van der Wurff E C I, De leeuw A W, Duine R A and Stoof H T C 2014 Phys. Rev. Lett. 113 135301
[28] Weiss C 2016 Phys. Rev. A 94 042124
[29] Cheng Z 2016 Phys. Rev. A 93 023829
[30] Schmitt J, Damm T, Dung D, Vewinger F, klaers J and Weitz M 2015 Phys. Rev. A 92 011602
[31] Marelic J and Nyman R A 2015 Phys. Rev. A 91 033813
[32] Zwierlein M W, Stan C A, Schunck C H, Raupach S M F, Kerman A J and Ketterle W 2004 Phys. Rev. Lett. 92 120403
[33] Li S C and Fu L B 2011 Phys. Rev. A 84 023605
[34] Nakajima S 1955 Adv. Phys. 4 363
[35] Cheng Z 1991 Phys. Rev. Lett. 67 2788
[36] Cheng Z 2013 Phys. Rev. A 87 053825
[1] Nonreciprocal wide-angle bidirectional absorber based on one-dimensional magnetized gyromagnetic photonic crystals
You-Ming Liu(刘又铭), Yuan-Kun Shi(史源坤), Ban-Fei Wan(万宝飞), Dan Zhang(张丹), and Hai-Feng Zhang(章海锋). Chin. Phys. B, 2023, 32(4): 044203.
[2] A 3-5 μm broadband YBCO high-temperature superconducting photonic crystal
Gang Liu(刘刚), Yuanhang Li(李远航), Baonan Jia(贾宝楠), Yongpan Gao(高永潘), Lihong Han(韩利红), Pengfei Lu(芦鹏飞), and Haizhi Song(宋海智). Chin. Phys. B, 2023, 32(3): 034213.
[3] High-fidelity universal quantum gates for hybrid systems via the practical photon scattering
Jun-Wen Luo(罗竣文) and Guan-Yu Wang(王冠玉). Chin. Phys. B, 2023, 32(3): 030303.
[4] Wavelength- and ellipticity-dependent photoelectron spectra from multiphoton ionization of atoms
Keyu Guo(郭珂雨), Min Li(黎敏), Jintai Liang(梁锦台), Chuanpeng Cao(曹传鹏), Yueming Zhou(周月明), and Peixiang Lu((陆培祥). Chin. Phys. B, 2023, 32(2): 023201.
[5] Multi-band polarization switch based on magnetic fluid filled dual-core photonic crystal fiber
Lianzhen Zhang(张连震), Xuedian Zhang(张学典), Xiantong Yu(俞宪同), Xuejing Liu(刘学静), Jun Zhou(周军), Min Chang(常敏), Na Yang(杨娜), and Jia Du(杜嘉). Chin. Phys. B, 2023, 32(2): 024205.
[6] Space continuous atom laser in one dimension
Yi Qin(秦毅), Xiao-Yang Shen(沈晓阳), Wei-Xuan Chang(常炜玄), and Lin Xia(夏林). Chin. Phys. B, 2023, 32(1): 013701.
[7] Method of measuring one-dimensional photonic crystal period-structure-film thickness based on Bloch surface wave enhanced Goos-Hänchen shift
Yao-Pu Lang(郎垚璞), Qing-Gang Liu(刘庆纲), Qi Wang(王奇), Xing-Lin Zhou(周兴林), and Guang-Yi Jia(贾光一). Chin. Phys. B, 2023, 32(1): 017802.
[8] Spatially modulated scene illumination for intensity-compensated two-dimensional array photon-counting LiDAR imaging
Jiaheng Xie(谢佳衡), Zijing Zhang(张子静), Mingwei Huang(黄明维),Jiahuan Li(李家欢), Fan Jia(贾凡), and Yuan Zhao(赵远). Chin. Phys. B, 2022, 31(9): 090701.
[9] Dual-channel tunable near-infrared absorption enhancement with graphene induced by coupled modes of topological interface states
Zeng-Ping Su(苏增平), Tong-Tong Wei(魏彤彤), and Yue-Ke Wang(王跃科). Chin. Phys. B, 2022, 31(8): 087804.
[10] How graph features decipher the soot assisted pigmental energy transport in leaves? A laser-assisted thermal lens study in nanobiophotonics
S Sankararaman. Chin. Phys. B, 2022, 31(8): 088201.
[11] High sensitivity dual core photonic crystal fiber sensor for simultaneous detection of two samples
Pibin Bing(邴丕彬), Guifang Wu(武桂芳), Qing Liu(刘庆), Zhongyang Li(李忠洋),Lian Tan(谭联), Hongtao Zhang(张红涛), and Jianquan Yao(姚建铨). Chin. Phys. B, 2022, 31(8): 084208.
[12] Manipulation of nonreciprocal unconventional photon blockade in a cavity-driven system composed of an asymmetrical cavity and two atoms with weak dipole-dipole interaction
Xinqin Zhang(张新琴), Xiuwen Xia(夏秀文), Jingping Xu(许静平), Haozhen Li(李浩珍), Zeyun Fu(傅泽云), and Yaping Yang(羊亚平). Chin. Phys. B, 2022, 31(7): 074204.
[13] Switchable down-, up- and dual-chirped microwave waveform generation with improved time-bandwidth product based on polarization modulation and phase encoding
Yuxiao Guo(郭玉箫), Muguang Wang(王目光), Hongqian Mu(牟宏谦), and Guofang Fan(范国芳). Chin. Phys. B, 2022, 31(7): 078403.
[14] Photon blockade in a cavity-atom optomechanical system
Zhong Ding(丁忠) and Yong Zhang(张勇). Chin. Phys. B, 2022, 31(7): 070304.
[15] Universal order-parameter and quantum phase transition for two-dimensional q-state quantum Potts model
Yan-Wei Dai(代艳伟), Sheng-Hao Li(李生好), and Xi-Hao Chen(陈西浩). Chin. Phys. B, 2022, 31(7): 070502.
No Suggested Reading articles found!