CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Strong anti-strain capacity of CoFeB/MgO interface on electronic structure and state coupling |
Fei Guo(郭飞), Yaping Wu(吴雅苹), Zhiming Wu(吴志明), Ting Chen(陈婷), Heng Li(李恒), Chunmiao Zhang(张纯淼), Mingming Fu(付明明), Yihong Lu(卢奕宏), Junyong Kang(康俊勇) |
Collaborative Innovation Center for Optoelectronic Semiconductors and Efficient Devices, Fujian Provincial Key Laboratory of Semiconductors and Applications, Department of Physics, Xiamen University, Xiamen 361005, China |
|
|
Abstract Electronic structure and spin-related state coupling at ferromagnetic material (FM)/MgO (FM=Fe, CoFe, CoFeB) interfaces under biaxial strain are evaluated using the first-principles calculations. The CoFeB/MgO interface, which is superior to the Fe/MgO and CoFe/MgO interfaces, can markedly maintain stable and effective coupling channels for majority-spin △1 state under large biaxial strain. Bonding interactions between Fe, Co, and B atoms and the electron transfer between Bloch states are responsible for the redistribution of the majority-spin △1 state, directly influencing the coupling effect for the strained interfaces. Layer-projected wave function of the majority-spin △1 state suggests slower decay rate and more stable transport property in the CoFeB/MgO interface, which is expected to maintain a higher tunneling magnetoresistance (TMR) value under large biaxial strain. This work reveals the internal mechanism for the state coupling at strained FM/MgO interfaces. This study may provide some references to the design and manufacturing of magnetic tunnel junctions with high tunneling magnetoresistance effect.
|
Received: 08 May 2017
Revised: 09 August 2017
Accepted manuscript online:
|
PACS:
|
75.70.Cn
|
(Magnetic properties of interfaces (multilayers, superlattices, heterostructures))
|
|
72.25.Mk
|
(Spin transport through interfaces)
|
|
72.25.-b
|
(Spin polarized transport)
|
|
73.20.-r
|
(Electron states at surfaces and interfaces)
|
|
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2016YFB0400801), the National Natural Science Foundation of China (Grant Nos. 61774128, 61674124, 11604275, 11304257, and 61227009), the Natural Science Foundation of Fujian Province of China (Grant Nos. 2017J01012, 2014J01026, 2016J01037, and 2015J01028), and the Fundamental Research Funds for the Central Universities, China (Grant Nos. 20720150027, 20720160044, 20720160122, 20720170085,20720170012, and 20720150033). |
Corresponding Authors:
Yaping Wu, Zhiming Wu, Junyong Kang
E-mail: ypwu@xmu.edu.cn;zmwu@xmu.edu.cn;jykang@xmu.edu.cn
|
Cite this article:
Fei Guo(郭飞), Yaping Wu(吴雅苹), Zhiming Wu(吴志明), Ting Chen(陈婷), Heng Li(李恒), Chunmiao Zhang(张纯淼), Mingming Fu(付明明), Yihong Lu(卢奕宏), Junyong Kang(康俊勇) Strong anti-strain capacity of CoFeB/MgO interface on electronic structure and state coupling 2018 Chin. Phys. B 27 017502
|
[1] |
Žutić I, Fabian J and Das Sarma S 2004 Rev. Mod. Phys. 76 323
|
[2] |
Fert A 2008 Rev. Mod. Phys. 80 1517
|
[3] |
Ohno H 2010 Nat. Mater. 9 952
|
[4] |
Wolf S A, Awschalom D D, Buhrman R A, Daughton J M, von Molnar S, Roukes M L, Chtchelkanova A Y and Treger D M 2001 Science 294 1488
|
[5] |
Syed Sheraz Ahmad W H, Tang J, Zhang Y S, Hu B, Ye J, Gul Q, Zhang X Q and Cheng Z H 2016 Chin. Phys. B 25 97501
|
[6] |
Parkin S S P, Roche K P, Samant M G and Rice P M 1999 J. Appl. Phys. 85 5828
|
[7] |
Mistral Q, Deac A, Grollier J, Redon O, Liu Y, Li M, Wang P, Dieny B and Devolder T 2006 Materials Science & Engineering B 126 267
|
[8] |
Pannetier M, Fermon C, Le G G, Simola J and Kerr E 2004 Science 304 1648
|
[9] |
Ripka P and Janosek M 2010 Sensors Journal IEEE 10 1108
|
[10] |
Meservey R and Tedrow P M 1994 Physics Reports 238 173
|
[11] |
Maekawa S and Inoue J 1996 J. Magn. Magn. Mater. 156 315
|
[12] |
Liu Y, Zhu K G, Zhong H C, Zhu Z Y, Yu T and Ma S D 2016 Chin. Phys. B 25 117805
|
[13] |
Mathon J and Umerski A 2001 Phys. Rev. B 63 220403
|
[14] |
Butler W H, Zhang X G, Schulthess T C and MacLaren J M 2001 Phys. Rev. B 63 054416
|
[15] |
Yuasa S and Djayaprawira D D 2007 J. Phys. D: Appl. Phys. 40 R337
|
[16] |
Yuasa S, Nagahama T, Fukushima A, Suzuki Y and Ando K 2004 Nat. Mater. 3 868
|
[17] |
Parkin S S, Kaiser C, Panchula A, Rice P M, Hughes B, Samant M and Yang S H 2004 Nat. Mater. 3 862
|
[18] |
Zhang X G and Butler W H 2004 Phys. Rev. B 70 172407
|
[19] |
Ikeda S, Hayakawa J, Ashizawa Y, Lee Y M, Miura K, Hasegawa H, Tsunoda M, Matsukura F and Ohno H 2008 Appl. Phys. Lett. 93 082508
|
[20] |
Zhang X G, Butler W H and Bandyopadhyay A 2003 Phys. Rev. B 68 092402
|
[21] |
Ke Y, Xia K and Guo H 2010 Phys. Rev. Lett. 105 236801
|
[22] |
Miao G X, Park Y J, Moodera J S, Seibt M, Eilers G and Münzenberg M 2008 Phys. Rev. Lett. 100 246803
|
[23] |
Wang Y, Zhang J, Zhang X G, Cheng H and Han X F 2010 Phys. Rev. B 82 054405
|
[24] |
Ma Q L, Iihama S, Kubota T, Zhang X M, Mizukami S, Ando Y and Miyazaki T 2012 Appl. Phys. Lett. 101 122414
|
[25] |
Guo F, Wu Z, Chen T, Wu Y, Cai G and Kang J 2015 Computational Materials Science 101 138
|
[26] |
He K H and Chen J S 2012 J. Appl. Phys. 111 07c109
|
[27] |
Ong P V, Kioussis N, Amiri P K, Wang K L and Carman G P 2015 J. Appl. Phys. 117 17b518
|
[28] |
Löhndorf M, Duenas T, Tewes M, Quandt E, Rührig M and Wecker J 2002 Appl. Phys. Lett. 81 313
|
[29] |
Bonell F 2010 Phys. Rev. B 82 092405
|
[30] |
Burke K, Werschnik J and Gross E K U 2005 J. Chem. Phys. 123 062206
|
[31] |
Parr B R and Yang W 1989 Horizons of Quantum Chemistry (New York: Oxford University Press) pp. 5-15
|
[32] |
Car R and Parrinello M 1985 Phys. Rev. Lett. 55 2471
|
[33] |
Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
|
[34] |
Blöchl P E 1994 Phys. Rev. B 50 17953
|
[35] |
Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
|
[36] |
Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
|
[37] |
Chadi D J 1977 Phys. Rev. B 16 1746
|
[38] |
Methfessel M and Paxton A T 1989 Phys. Rev. B 40 3616
|
[39] |
Kanaji T, Asano K and Nagata S 1973 Vacuum 23 55
|
[40] |
Lawler J F, Schad R, Jordan S and Kempen H V 1997 J. Magn. Magn. Mater. 165 224
|
[41] |
Li C and Freeman A J 1991 Phys. Rev. B 43 780
|
[42] |
Nguyen M C, Zhao X, Ji M, Wang C Z, Harmon B and Ho K M 2012 Journal of the Optical Society of America A Optics Image Science & Vision 29 695
|
[43] |
Olsson P, Klaver T P C and Domain C 2010 Phys. Rev. B 81 054102
|
[44] |
Burton J D, Jaswal S S, Tsymbal E Y, Mryasov O N and Heinonen O G 2006 Appl. Phys. Lett. 89 142507
|
[45] |
Urano T and Kanaji T 1988 J. Phys. Soc. Jpn. 57 3403
|
[46] |
Wortmann D, Bihlmayer G and Blügel S 2004 J. Phys.: Condens. Matter 16 S5819
|
[47] |
Zhang X G and Butler W H 2003 J. Phys.: Condens. Matter 15 R1603
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|