Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(12): 127302    DOI: 10.1088/1674-1056/26/12/127302
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Capacitance extraction method for a gate-induced quantum dot in silicon nanowire metal-oxide-semiconductor field-effect transistors

Yan-Bing Xu(徐雁冰), Hong-Guan Yang(杨红官)
School of Physics and Electronics, Hunan University, Changsha 410082, China
Abstract  An improved method of extracting the coupling capacitances of quantum dot structure is reported. This method is based on measuring the charge transfer current in the silicon nanowire metal-oxide-semiconductor field-effect transistor (MOSFET), in which the channel closing and opening are controlled by applying alternating-current biases with a half period phase shift to the dual lower gates. The capacitances around the dot, including fringing capacitances and barrier capacitances, are obtained by analyzing the relation between the transfer current and the applied voltage. This technique could be used to extract the capacitance parameters not only from the bulk silicon devices, but also from the silicon-on-insulator (SOI) MOSFETs.
Keywords:  nanowire MOSFETs      coupling capacitance      fringing capacitance      quantum dot  
Received:  26 April 2017      Revised:  10 August 2017      Accepted manuscript online: 
PACS:  73.21.La (Quantum dots)  
  84.37.+q (Measurements in electric variables (including voltage, current, resistance, capacitance, inductance, impedance, and admittance, etc.))  
  73.21.Hb (Quantum wires)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61474041).
Corresponding Authors:  Hong-Guan Yang     E-mail:  yanghg@hnu.edu.cn

Cite this article: 

Yan-Bing Xu(徐雁冰), Hong-Guan Yang(杨红官) Capacitance extraction method for a gate-induced quantum dot in silicon nanowire metal-oxide-semiconductor field-effect transistors 2017 Chin. Phys. B 26 127302

[1] Han T Y, Deng G W, Wei D and Guo G P 2016 Chin. Phys. Lett. 33 047301
[2] Xu W P, Zhang Y Y, Wang Q and Nie Y H 2016 Chin. Phys. B 25 117307
[3] Li R 2015 Acta Phys. Sin. 64 167303(in Chinese)
[4] Inokawa H, and Takahashi Y 2016 JJAP Conf. Proc. 4 011201
[5] Wang W Q, Wang L, Jiang Y, Ma Z G, Sun L, Liu J, Sun Q L, Zhao B, Wang W X, Liu W M, Jia H Q and Chen H 2016 Chin. Phys. B 25 097307
[6] Nishiguchi K, Ono Y and Fujiwara A 2011 Appl. Phys. Lett. 98 193502
[7] Ahmad F, Bhat G M and Khademolhosseini H 2016 J. Comput. Sci. 16 8
[8] Kong K, Shang Y and Lu R Q 2016 Microelectron. J. 50 35
[9] Singh V, Inokawa H, Endoh T and Satoh H 2010 Jpn. J. Appl. Phys. 49 128002
[10] Wang S X, Li Y X, Wang N and Liu J J 2016 Acta Phys. Sin. 65 137302(in Chinese)
[11] Staford H, Young R W, Nordberg E P, Pinilla C B, Levy J E and Carroll M S 2011 IEEE T. Nanotechnol. 10 855
[12] Fan M M, Xu J P, Lu L, Bai Y R and Huang Y 2015 Chin. Phys. B 24 037303
[13] Zhao S C, Zhang S Y, Wu Q X and Jia J 2015 Chin. Phys. Lett. 32 058104
[14] Li W, Xu L, Zhao W M, Ding H L, Ma Z Y, Xu J and Chen K J 2010 Chin. Phys. B 19 047308
[15] Inokawa H, Fujiwara A, Nishiguchi K and Ono Y 2007 Extended abstracts of the 2007 international conference on solid-state devices and materials, September 19-21, 2007, Tsukuba, Japan, p. 874
[16] Yang H G and Inokawa H 2012 Solid State Electron. 76 5
[17] Zimmeman N M, Fujiwara A, Inokawa H and Takahashi Y 2006 Appl. Phys. Lett. 89 052102
[1] Adaptive genetic algorithm-based design of gamma-graphyne nanoribbon incorporating diamond-shaped segment with high thermoelectric conversion efficiency
Jingyuan Lu(陆静远), Chunfeng Cui(崔春凤), Tao Ouyang(欧阳滔), Jin Li(李金), Chaoyu He(何朝宇), Chao Tang(唐超), and Jianxin Zhong(钟建新). Chin. Phys. B, 2023, 32(4): 048401.
[2] Electron beam pumping improves the conversion efficiency of low-frequency photons radiated by perovskite quantum dots
Peng Du(杜鹏), Yining Mu(母一宁), Hang Ren(任航), Idelfonso Tafur Monroy, Yan-Zheng Li(李彦正), Hai-Bo Fan(樊海波), Shuai Wang(王帅), Makram Ibrahim, and Dong Liang(梁栋). Chin. Phys. B, 2023, 32(4): 048704.
[3] High-fidelity universal quantum gates for hybrid systems via the practical photon scattering
Jun-Wen Luo(罗竣文) and Guan-Yu Wang(王冠玉). Chin. Phys. B, 2023, 32(3): 030303.
[4] Electrical manipulation of a hole ‘spin’-orbit qubit in nanowire quantum dot: The nontrivial magnetic field effects
Rui Li(李睿) and Hang Zhang(张航). Chin. Phys. B, 2023, 32(3): 030308.
[5] Thermoelectric signature of Majorana zero modes in a T-typed double-quantum-dot structure
Cong Wang(王聪) and Xiao-Qi Wang(王晓琦). Chin. Phys. B, 2023, 32(3): 037304.
[6] Nonlinear optical rectification of GaAs/Ga1-xAlxAs quantum dots with Hulthén plus Hellmann confining potential
Yi-Ming Duan(段一名) and Xue-Chao Li(李学超). Chin. Phys. B, 2023, 32(1): 017303.
[7] Ion migration in metal halide perovskite QLEDs and its inhibition
Yuhui Dong(董宇辉), Danni Yan(严丹妮), Shuai Yang(杨帅), Naiwei Wei(魏乃炜),Yousheng Zou(邹友生), and Haibo Zeng(曾海波). Chin. Phys. B, 2023, 32(1): 018507.
[8] Steering quantum nonlocalities of quantum dot system suffering from decoherence
Huan Yang(杨欢), Ling-Ling Xing(邢玲玲), Zhi-Yong Ding(丁智勇), Gang Zhang(张刚), and Liu Ye(叶柳). Chin. Phys. B, 2022, 31(9): 090302.
[9] Large Seebeck coefficient resulting from chiral interactions in triangular triple quantum dots
Yi-Ming Liu(刘一铭) and Jian-Hua Wei(魏建华). Chin. Phys. B, 2022, 31(9): 097201.
[10] Dynamic transport characteristics of side-coupled double-quantum-impurity systems
Yi-Jie Wang(王一杰) and Jian-Hua Wei(魏建华). Chin. Phys. B, 2022, 31(9): 097305.
[11] High-quality CdS quantum dots sensitized ZnO nanotube array films for superior photoelectrochemical performance
Qian-Qian Gong(宫倩倩), Yun-Long Zhao(赵云龙), Qi Zhang(张奇), Chun-Yong Hu(胡春永), Teng-Fei Liu(刘腾飞), Hai-Feng Zhang(张海峰), Guang-Chao Yin(尹广超), and Mei-Ling Sun(孙美玲). Chin. Phys. B, 2022, 31(9): 098103.
[12] Modeling and numerical simulation of electrical and optical characteristics of a quantum dot light-emitting diode based on the hopping mobility model: Influence of quantum dot concentration
Pezhman Sheykholeslami-Nasab, Mahdi Davoudi-Darareh, and Mohammad Hassan Yousefi. Chin. Phys. B, 2022, 31(6): 068504.
[13] Chiral splitting of Kondo peak in triangular triple quantum dot
Yi-Ming Liu(刘一铭), Yuan-Dong Wang(王援东), and Jian-Hua Wei(魏建华). Chin. Phys. B, 2022, 31(5): 057201.
[14] Stability and luminescence properties of CsPbBr3/CdSe/Al core-shell quantum dots
Heng Yao(姚恒), Anjiang Lu(陆安江), Zhongchen Bai(白忠臣), Jinguo Jiang(蒋劲国), and Shuijie Qin(秦水介). Chin. Phys. B, 2022, 31(4): 046106.
[15] High-fidelity quantum sensing of magnon excitations with a single electron spin in quantum dots
Le-Tian Zhu(朱乐天), Tao Tu(涂涛), Ao-Lin Guo(郭奥林), and Chuan-Feng Li(李传锋). Chin. Phys. B, 2022, 31(12): 120302.
No Suggested Reading articles found!