Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(5): 050502    DOI: 10.1088/1674-1056/ab8201
Special Issue: SPECIAL TOPIC — Topological 2D materials
SPECIAL TOPIC—Topological 2D materials Prev   Next  

Topological Anderson insulator in two-dimensional non-Hermitian systems

Hongfang Liu(刘宏芳)1, Zixian Su(苏子贤)1, Zhi-Qiang Zhang(张智强)1, Hua Jiang(江华)1,2
1 School of Physics and Technology, Soochow University, Suzhou 215006, China;
2 Institute for Advanced Study, Soochow University, Suzhou 215006, China
Abstract  We study the disorder-induced phase transition in two-dimensional non-Hermitian systems. First, the applicability of the noncommutative geometric method (NGM) in non-Hermitian systems is examined. By calculating the Chern number of two different systems (a square sample and a cylindrical one), the numerical results calculated by NGM are compared with the analytical one, and the phase boundary obtained by NGM is found to be in good agreement with the theoretical prediction. Then, we use NGM to investigate the evolution of the Chern number in non-Hermitian samples with the disorder effect. For the square sample, the stability of the non-Hermitian Chern insulator under disorder is confirmed. Significantly, we obtain a nontrivial topological phase induced by disorder. This phase is understood as the topological Anderson insulator in non-Hermitian systems. Finally, the disordered phase transition in the cylindrical sample is also investigated. The clean non-Hermitian cylindrical sample has three phases, and such samples show more phase transitions by varying the disorder strength: (1) the normal insulator phase to the gapless phase, (2) the normal insulator phase to the topological Anderson insulator phase, and (3) the gapless phase to the topological Anderson insulator phase.
Keywords:  disorder effect      topological Anderson insulator      non-Hermitian systems  
Received:  02 January 2020      Revised:  15 February 2020      Accepted manuscript online: 
PACS:  05.50.+q (Lattice theory and statistics)  
  03.65.Vf (Phases: geometric; dynamic or topological)  
Fund: Project supported by the National Basic Research Program of China (Grant No. 2019YFA0308403), the National Natural Science Foundation of China (Grant No. 11822407), Undergraduate Training Program for Innovation and Entrepreneurship, Soochow University (Grant No. 201810285022Z), and a Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions, China.
Corresponding Authors:  Zhi-Qiang Zhang, Hua Jiang     E-mail:  zqzhang2018@stu.suda.edu.cn;jianghuaphy@suda.edu.cn

Cite this article: 

Hongfang Liu(刘宏芳), Zixian Su(苏子贤), Zhi-Qiang Zhang(张智强), Hua Jiang(江华) Topological Anderson insulator in two-dimensional non-Hermitian systems 2020 Chin. Phys. B 29 050502

[1] Kane C L and Mele E J 2005 Phys. Rev. Lett. 95 226801
[2] Kane C L and Mele E J 2005 Phys. Rev. Lett. 95 146802
[3] Hasan M Z, Kane C L and Colloquium 2010 Rev. Mod. Phys. 82 3045
[4] Moore J E 2010 Nature 464 194
[5] Qi X L and Zhang S C 2011 Rev. Mod. Phys. 83 1057
[6] Bernevig B A, Hughes T L and Zhang S C 2006 Science 314 1757
[7] König M, Wiedmann S, Brüne C, Roth A, Buhmann H, Molenkamp L W, Qi X L and Zhang S C 2007 Science 318 766
[8] Yan B H and Felser C 2017 Annu. Rev. Condens. Matter Phys. 8 337
[9] Liu Z K, Zhou B, Zhang Y, Wang Z J, Weng H M, Prabhakaran D, Mo S K, Shen Z X, Fang Z, Dai X, Hussain Z and Chen Y L 2014 Science 343 864
[10] Alicea J 2012 Rep. Prog. Phys. 75 076501
[11] Chang C Z, Zhang J, Feng X, Shen J, Zhang Z C, Guo M H, Li K, Ou Y B, Wei P, Wang L L, Ji Z Q, Feng Y, Ji S H, Chen X, Jia J F, Dai X, Fang Z, Zhang S C, He K, Wang Y Y, Lu L, Ma X C and Xue Q K 2013 Science 340 167
[12] Schindler F, Cook A M, Vergniory M G, Wang Z, Parkin S S, Bernevig B and Neupert T 2018 Sci. Adv. 4 eaat0346
[13] Otrokov M M, Rusinov I P, Blanco-Rey M, Hoffmann M, Yu A, Eremeev S V, Ernst A, Echenique P M, Arnau A and Chulkov E V 2019 Phys. Rev. Lett. 122 107202
[14] Altland A and Zirnbauer M R 1997 Phys. Rev. B 55 1142
[15] Chiu C K, Teo J C Y, Schnyder A P and Ryu S 2016 Rev. Mod. Phys. 88 035005
[16] Kitaev A 2009 AIP Conf. Proc. 1134 22
[17] Fu L 2011 Phys. Rev. Lett. 106 106802
[18] Hsieh T H, Lin H, Liu J W, Duan W H, Bansil A and Fu L 2012 Nat. Commun. 3 982
[19] Dziawa P, Kowalski B J, Dybko K, Buczko R, Szczerbakow A, Szot M, Lusakowska E, Balasubramanian T, Wojek B M, Berntsen M H, Tjernberg O and Story T 2012 Nat. Materials 11 1023
[20] Ando Y and Fu L 2015 Annu. Rev. Condens. Matter Phys. 6 361
[21] Ma J Z, Yi C J, Lv B Q, Wang Z J, Nie S M, Wang L, Kong L Y, Huang Y B, Richard P, Zhang P, Yaji K, Kuroda K, Shin S, Weng H M, Bernevig B A, Shi Y G, Qian T and Ding H 2017 Science Advances 3 e1602415
[22] Wang Z, Alexandradinata A, Cava R J and Bernevig B A 2016 Nature 532 189
[23] Po H C, Vishwanath A and Watanabe H 2017 Nat. Commun. 8 50
[24] Bradlyn B, Elcoro L, Cano J, Vergniory M G, Wang Z J, Felser C, Aroyo M I and Bernevig B A 2017 Nature 547 298
[25] Li Y H, Liu J, Song J T, Jiang H, Sun Q F and Xie X C 2018 Sci. China-Phys: Mech. Astron. 61 97411
[26] Tang F, Po H C, Vishwanath A and Wan X G 2019 Nature 566 486
[27] Zhang T, Jiang J, Song Z, Huang H, He Y Q, Fang Z, Weng H M and Fang C 2019 Nature 566 475
[28] Vergniory M G, Elcoro L, Felser C, Regnault N, Bernevig B A and Wang Z J 2019 Nature 566 480
[29] Moiseyev N 2011 Non-Hermitian quantum mechanics (London: Cambridge University Press) p. 211
[30] Graf G M and Porta M 2013 Commun. Math. Phys. 324 851
[31] Shen H, Zhen B and Fu L 2018 Phys. Rev. Lett. 120 146402
[32] Yin C H, Jiang H, Li L H, Lü R and Chen S 2018 Phys. Rev. A 97 052115
[33] Xiong Y 2018 J. Phys. Commun. 2 035043
[34] Kunst F K, Edvardsson E, Budich J C and Bergholtz E J 2018 Phys. Rev. Lett. 121 026808
[35] Yao S and Wang Z 2018 Phys. Rev. Lett. 121 086803
[36] Yao S, Song F and Wang Z 2018 Phys. Rev. Lett. 121 136802
[37] Liu J S, Han Y Z and Liu C S 2020 Chin. Phys. B 29 010302
[38] Zhao L Y, Li H W, Yin Z Q, Chen W, You J and Han Z F 2019 Chin. Phys. B 28 100304
[39] Wang Y Y and Fang M F 2018 Chin. Phys. B 27 114207
[40] Baradaran M and Panahi H 2017 Chin. Phys. B 26 060301
[41] Song F, Yao S and Wang Z 2019 Phys. Rev. Lett. 123 170401
[42] Zhang K, Yang Z and Fang C 2019 arXiv:1910.01131[hep-ph]
[43] Okuma N, Kawabata K, Shiozaki K and Sato M 2020 Phys. Rev. Lett. 124 086801
[44] Fradkin E and Hirsch J E 1983 Phys. Rev. B 27 1680
[45] Asbóth J K, Oroszlány L and Pályi A 2016 The Su-Schrieffer-Heeger (SSH) Model, in A Short Course on Topological Insulators: Band Structure and Edge States in One and Two Dimensions (Cham: Springer) pp. 1-22
[46] Mondragon-Shem I, Hughes T L, Song J T and Prodan E 2014 Phys. Rev. Lett. 113 046802
[47] Song J T and Prodan E 2014 Phys. Rev. B 89 224203
[48] Anderson P W 1958 Phys. Rev. 109 1492
[49] Evers F and Mirlin A D 2008 Rev. Mod. Phys. 80 1355
[50] Kramer B and MacKinnon A 1993 Rep. Prog. Phys. 56 1469
[51] Lee P A and Ramakrishnan T V 1985 Rev. Mod. Phy. 57 287
[52] Cha M C and Fertig H A 1995 Phy. Rev. Lett. 74 4867
[53] Chen R, Xu D H and Zhou B 2017 Phys. Rev. B 96 205304
[54] Zhang Z Q, Wu B L, Song J and Jiang H 2019 Phys. Rev. B 100 184202
[55] Su Z X, Kang Y Z, Zhang B F, Zhang Z Q and Jiang H 2019 Chin. Phys. B 28 117301
[56] Wu B L, Song J T, Zhou J J and Jiang H 2016 Chin. Phys. B 25 117311
[57] Li J, Chu R L, Jain J K and Shen S Q 2009 Phys. Rev. Lett. 102 136806
[58] Jiang H, Wang L, Sun Q F and Xie X C 2009 Phys. Rev. B 80 165316
[59] Meier E J, An F A, Dauphin A, Maffei M, Massignan P 2018 Science 362 929
[60] Stützer S, Plotnik Y, Lumer Y, Titum P, Lindner N H, Segev M, Rechtsman M C and Szameit A 2018 Nature 560 461
[61] Gong Z P, Ashida Y T, Kawabata K, Takasan K, Higashikawa S and Ueda M 2018 Phys. Rev. X 8 031079
[62] Alvarez V M M, Vargas J E B and Torres L E F F 2018 Phys. Rev. B 97 121401
[63] Tzortzakakis A F, Makris K G and Economou E 2020 Phys. Rev. B 101 014202
[64] Prodan E 2011 Phys. A-Math. Theor. 44 113001
[65] Zhang Y F, Yang Y Y, Ju Y, Sheng L, Shen R, Sheng D N and Xing D Y 2013 Chin. Phys. B 22 117312
[66] Kawabata K, Shiozaki K, Ueda M and Sato M 2019 Phys. Rev. X 9 041015
[67] Song F, Yao S and Wang Z 2019 Phys. Rev. Lett. 123 246801
[68] Zhang D W, Tang L Z, Lang L J, Yan H and Zhu S L 2019 arXiv:1908.01172[hep-ph]
[1] Transport property of inhomogeneous strained graphene
Bing-Lan Wu(吴冰兰), Qiang Wei(魏强), Zhi-Qiang Zhang(张智强), and Hua Jiang(江华). Chin. Phys. B, 2021, 30(3): 030504.
[2] Disorder induced phase transition in magnetic higher-order topological insulator: A machine learning study
Zixian Su(苏子贤), Yanzhuo Kang(康艳卓), Bofeng Zhang(张博峰), Zhiqiang Zhang(张智强), Hua Jiang(江华). Chin. Phys. B, 2019, 28(11): 117301.
[3] Disorder effects in topological states: Brief review of the recent developments
Binglan Wu(吴冰兰), Juntao Song(宋俊涛), Jiaojiao Zhou(周娇娇), Hua Jiang(江华). Chin. Phys. B, 2016, 25(11): 117311.
[4] The robustness of quantum spin Hall effect to the thickness fluctuation in HgTe quantum wells
Guo Huai-Ming (郭怀明), Zhang Xiang-Lin (张相林), Feng Shi-Ping (冯世平 ). Chin. Phys. B, 2012, 21(11): 117301.
No Suggested Reading articles found!