By using a multi-configurational time-dependent Hartree-Fock (MCTDHF) method for the time-dependent Schrödinger equation and a Newtonian equation of motion for lattice, we investigate the disorder effects on the dissociation process of excitons in conjugated polymer chains. The simulations are performed within the framework of an extended version of the Su-Schrieffer-Heeger model modified to include on-site disorder, off-diagonal, electron-electron interaction, and an external electric field. Our results show that Coulomb correlation effects play an important role in determining the exciton dissociation process. The electric field required to dissociate an exciton can practically impossibly occur in a pure polymer chain, especially in the case of triplet exciton. However, when the on-site disorder effects are taken into account, this leads to a reduction in mean dissociation electric fields. As the disorder strength increases, the dissociation field decreases effectively. On the contrary, the effects of off-diagonal disorder are negative in most cases. Moreover, the dependence of exciton dissociation on the conjugated length is also discussed.
Yuwen Feng(冯誉雯), Hui Zhao(赵晖), Yuguang Chen(陈宇光), Yonghong Yan(鄢永红) Effect of disorder on exciton dissociation in conjugated polymers 2017 Chin. Phys. B 26 107103
[1]
Friend R H, Gymer R W, Holmes A B, Burroughes J H, Marks R N, Taliani C, Bradley D D C, Santos D A D, Brédas J L, L ö gdlund M and Salaneck W R 1999 Nature 397 121
[2]
Dodabalapur A, Katz H E, Torsi L and Haddon R C 1995 Science 269 1560
[3]
Yu G, Gao J, Hummelen J C, Wudl F and Heeger A J 1995 Science 270 1789
[4]
Heeger A J 2001 Rev. Mod. Phys. 73 681
[5]
Chandross M, Mazumdar S, Jeglinski X W S, Vardeny Z V, Kwock E and Miller T M 1994 Phys. Rev. B 50 14702
[6]
Sariciftci N S, Smilowitz L, Heeger A J and Wudl F 1992 Science 258 1474
[7]
Shaheen S E, Brabec C J, Padinger F, Fromherz T, Hummelen J C and Sariciftci N S 2001 Appl. Phys. Lett. 78 841
[8]
Chen L C, Godovsky D, Ingan ä s O, Svensson M and Anderson M R 2000 Adv. Mater. (Weinheim, Ger.) 12 1367
[9]
Halls J J M, Walsh C A, Greenham N C, Marseglia E A, Friend R H, Moratti S C and Holmes A B 1995 Nature 376 498
[10]
Yu G and Heeger A J 1995 J. Appl. Phys. 78 4510
[11]
Gregg B A and Hanna M C 2003 J. Appl. Phys. 93 3605
[12]
Popovic Z D, Hor A M and Loutfy R O 1998 Chem. Phys. 127 451
[13]
Basko D M and Conwell E M 2003 Synth. Metals 139 819
[14]
Arkhipov V I, Emelianova E V and B ä ssler H 1999 Phys. Rev. Lett. 82 1321
[15]
Fu R L, Guo G Y and Sun X 2000 Phys. Rev. B 62 15735
[16]
Too C O, Wallace G G, Burrell A K, Collis G E, Officer D L, Boge E Q, Brodie S G and Evans E J 2001 Synth. Metals 123 53
[17]
Sirringhaus H, Brown P J, Friend R H, Nielsen M M, Bechgaard K, Langeveld-Voss B M W, Spiering A J H, Janssen R A J, Meijer E W, Herwig P and de Leeuw D M 1999 Nature 401 685
[18]
Kline R J, McGehee M D, Kadnikova E N, Liu J and Fr é chet J M J 2003 Adv. Mater. 15 1519
[19]
Kline R J, McGehee M D, Kadnikova E N, Liu J, Fr é chet J M J and Toney M F 2005 Macromolecules 38 3312
[20]
Kanemoto K, Furukawa K, Negishi N, Aso Y and Otsubo T 2007 Phys. Rev. B 76 155205
[21]
Yuan X J, Dong X F, Li D M and Liu D S 2011 J. Chem. Phys. 134 244901
[22]
Yuan X J, Li D M, Yin S, Gao K, Cui B and Liu D S 2012 Org. Electron. 13 2094
[23]
B ö hlin J, Linares M and Stafstr ö m S 2011 Phys. Rev. B 83 085209
[24]
Konezny S J, Rothberg L J, Galvin M E and Smith D L 2010 Appl. Phys. Lett. 97 143305
[25]
Menon A, Dong H, Niazimbetova Z I, Rothberg L J and Galvin M E 2002 Chem. Mater. 14 3668
[26]
Sariciftci N S 1997 Primary Photoexcitations in Conjugated Polymers:Molecular Exciton versus Semiconductor Band Model (Singapore:World Scientific)
[27]
Shuai Z, Beljonne D, Silbey R J and Bredas J L 2000 Phys. Rev. Lett. 84 131
[28]
Beljonne D, Ye A, Shuai Z and Brédas J L 2004 Adv. Func. Mater. 14 684
[29]
Wohlgenannt M, Tandon K, Mazumdar S, Ramasesha S and Vardeny Z V 2001 Nature 409 494
[30]
Wohlgenannt M, Yang C and Vardeny Z V 2002 Phys. Rev. B 66 241201(R)
[31]
Zhao H, Yao Y, An Z and Wu C Q 2008 Phys. Rev. B 78 035209
[32]
Zhao H, Chen Y G, Yan Y H, An Z and Wu C Q 2012 Europhys. Lett. 100 57005
[33]
Miranda R P, Fisher A J, Stella L and Horsfield A P 2011 J. Chem. Phys. 134 244101
[34]
Miranda R P, Fisher A J, Stella L and Horsfield A P 2011 J. Chem. Phys. 134 244102
[35]
Surján P R, Lázár A and Kállay M 1998 Phys. Rev. B 58 3490
[36]
Mazumdar S and Dixit S N 1983 Phys. Rev. Lett. 51 292
[37]
Su W P, Schrieffer J R and Heeger A J 1979 Phys. Rev. Lett. 42 1698
[38]
Su W P, Schrieffer J R and Heeger A J 1980 Phys. Rev. B 22 2099
[39]
Brazovskii S A and Kirova N N 1981 Sov. Phys. JETP Lett. 33 4
[40]
Heeger A J, Kivelson S, Schrieffer J R and Su W P 1988 Rev. Mod. Phys. 60 781
[41]
Liu X J, Zhang Y L and An Z 2013 Org. Electron. 14 2692
Thermally induced band hybridization in bilayer-bilayer MoS2/WS2 heterostructure Yanchong Zhao(赵岩翀), Tao Bo(薄涛), Luojun Du(杜罗军), Jinpeng Tian(田金朋), Xiaomei Li(李晓梅), Kenji Watanabe, Takashi Taniguchi, Rong Yang(杨蓉), Dongxia Shi(时东霞), Sheng Meng(孟胜), Wei Yang(杨威), and Guangyu Zhang(张广宇). Chin. Phys. B, 2021, 30(5): 057801.
No Suggested Reading articles found!
Viewed
Full text
Abstract
Cited
Altmetric
blogs
tweeters
Facebook pages
Wikipedia page
Google+ users
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.