Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(10): 107202    DOI: 10.1088/1674-1056/26/10/107202
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Optimize the thermoelectric performance of CdO ceramics by doping Zn

Xin-Yu Zha(查欣雨), Lin-Jie Gao(高琳洁), Hong-Chang Bai(白洪昌), Jiang-Long Wang(王江龙), Shu-Fang Wang(王淑芳)
Hebei Key Laboratory of Optic-electronic Information and Materials, The College of Physics Science and Technology, Hebei University, Baoding 071002, China
Abstract  

The thermoelectric performance of CdO ceramics was enhanced by simultaneously optimizing the electrical and thermal transport properties via a small amount of Zn doping (≤ 3%). The introduction of Zn can obviously increase the electrical conductivity of CdO due to the simultaneous increase of carrier concentration and mobility, and eventually results in an improvement in power factor. Zn doping is also effective in suppressing the thermal conductivity of CdO because of stronger phonon scatterings from point defects, Zn-riched second phase, and grain boundaries. A best ZT of about 0.45 has been achieved in the Cd1-xZnxO systems at about 1000 K, which is comparable to the highest values reported for other n-type oxide TE materials.

Keywords:  thermoelectric properties      CdO      Zn doping      power factor      thermal conductivity  
Received:  19 April 2017      Revised:  26 July 2017      Accepted manuscript online: 
PACS:  72.80.Ga (Transition-metal compounds)  
  72.20.Pa (Thermoelectric and thermomagnetic effects)  
  81.20.Ev (Powder processing: powder metallurgy, compaction, sintering, mechanical alloying, and granulation)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant No. 51372064), the Natural Science Foundation of Hebei Province, China (Grant Nos. A2014201176 and E2017201209), the Outstanding Doctoral Cultivation Project of Hebei University (Grant No. YB201502), and the Hebei Province Universities Science and Technology Program funded by the Hebei Provincial Education Department, China (Grant Nos. ZD2014018 and QN2017017).

Corresponding Authors:  Lin-Jie Gao, Jiang-Long Wang     E-mail:  LinjieGao@hotmail.com;jlwang@hbu.edu.cn

Cite this article: 

Xin-Yu Zha(查欣雨), Lin-Jie Gao(高琳洁), Hong-Chang Bai(白洪昌), Jiang-Long Wang(王江龙), Shu-Fang Wang(王淑芳) Optimize the thermoelectric performance of CdO ceramics by doping Zn 2017 Chin. Phys. B 26 107202

[1] Bell L E 2008 Science 321 1457
[2] Zhao J, Liu Z, Reid J, Takarabe K, Iida T, Wang B, Yoshiya U and Tse J S 2015 J. Mater. Chem. 3 19774
[3] Zhao L D, Lo S H, Zhang Y, Sun H, Tan G, Uher C, Wolverton C, Dravid V P and Kanatzidis M G 2014 Nature 508 373
[4] Zhang X X, Chang C, Zhou Y M and Zhao L D 2017 Materials 10 198
[5] Liu Y, Zhao L D, Zhu Y C, Liu Y C, Li F, Yu M J, Liu D B, Xu W, Lin Y H and Nan C W 2016 Adv. Energy Mater. 6 1502423
[6] Feng D, Zheng F S, Wu D, Wu M H, Li W, Huang L, Zhao L D and He J Q 2016 Nano Energy 27 167
[7] Bittner M, Helmich L, Nietschke F, Geppert B, Oeckler O and Feldhoff A 2017 J. Eur. Ceram. Soc. 37 3909
[8] Lan J L, Liu Y C, Zhan B, Lin Y H, Zhang B, Yuan X, Zhang W Q and Nan C W 2013 Adv. Mater. 25 5086
[9] Nong N V, Pryds N, Linderoth S and Ohtaki M 2011 Adv. Mater. 23 2484
[10] Wang S F, Zhang Z C, He L P, Chen M J, Yu W and Fu G S 2009 Appl. Phys. Lett. 94 162108
[11] Zhao L D, He J Q, Berardan D, Lin Y H, Li J F, Nan C W and Dragoe N 2014 Energy Environ. Sci. 7 2900
[12] Kumar P, Kashyap S C, Sharma V K and Gupta H C 2015 Chin. Phys. B 24 098101
[13] Wu Z H, Xie H Q, Zhai Y B, Gan L H and Liu J 2015 Chin. Phys. B 24 034402
[14] Li L L, Qin X Y, Liu Y F and Liu Q Z 2015 Chin. Phys. B 24 067202
[15] Wang H C, Wang C L, Su W B, Liu J, Sun Y, Peng H and Mei L M 2011 J. Am. Caram. Soc. 94 838
[16] Bocher L, Aguirre M H, Logvinovich D, Shkabko A, Robert R, Trottmann M and Weidenkaff A 2008 Inorg. Chem. 47 8077
[17] Ohtaki M, Araki K and Yamamoto K 2009 J. Electron. Mater. 38 1234
[18] Jood P, Mehta R J, Zhang Y L, Tasciuc T B, Dou S X, Singh D J and Ramanath G 2014 RSC Adv. 4 6363
[19] Teranishi T, Mori Y, Hayashi H and Kishimoto A 2012 J. Am. Ceram. Soc. 95 690
[20] Liu Y, Lin Y H, Lan J L, Xu W, Zhang B P, Nan C W and Zhu H M 2010 J. Am. Ceram. Soc. 93 2938
[21] Berardan D, Guilmeau E, Maignan A and Raveau B 2008 Solid State Commum. 146 97
[22] Lan J L, Liu Y, Lin Y H, Nan C W, Cai Q and Yang X 2015 Sci. Rep. 5 7783
[23] Wang S F, Liu F Q, Lü Q, Dai S Y, Wang J L, Yu W and Fu G S 2013 J. Eur. Ceram. Soc. 33 1763
[24] Wang S F, Lü Q, Li L J, Fu G S, Liu F Q, Dai S Y, Yu W and Wang J L 2013 Scr. Mater. 69 533
[25] Li L J, Liang S, Li S M, Wang J L, Wang S F, Dong G Y and Fu G S 2014 Nanotechnology 25 425402
[26] Gao L J, Wang S F, Liu R, Zhai S J, Zhang H R, Wang J L and Fu G S 2016 J. Alloys Compd. 662 213
[27] Cinibulk M K 2004 J. Am. Ceram. Soc. 87 692
[28] Granger G B and Guizard C 2007 Scr. Mater. 56 983
[29] Dakhel A A 2012 J. Alloys Compd. 539 26
[30] Wiff J P, Kinemuchi Y, Kaga H, Ito C and Watari K 2009 J. Eur. Ceram. Soc. 29 1413
[31] Yan M, Lane M, Kannewurf C R and Chang R P H 2001 Appl. Phys. Lett. 78 2342
[32] Dakhel A A 2009 Sol. Energy 83 934
[33] Jung K H, Lee K H, Seo W S and Choi S M 2012 Appl. Phys. Lett. 100 253902
[34] Tsujii N and Mori T 2013 Appl. Phys. Exp. 6 043001
[1] Prediction of lattice thermal conductivity with two-stage interpretable machine learning
Jinlong Hu(胡锦龙), Yuting Zuo(左钰婷), Yuzhou Hao(郝昱州), Guoyu Shu(舒国钰), Yang Wang(王洋), Minxuan Feng(冯敏轩), Xuejie Li(李雪洁), Xiaoying Wang(王晓莹), Jun Sun(孙军), Xiangdong Ding(丁向东), Zhibin Gao(高志斌), Guimei Zhu(朱桂妹), Baowen Li(李保文). Chin. Phys. B, 2023, 32(4): 046301.
[2] Effects of phonon bandgap on phonon-phonon scattering in ultrahigh thermal conductivity θ-phase TaN
Chao Wu(吴超), Chenhan Liu(刘晨晗). Chin. Phys. B, 2023, 32(4): 046502.
[3] Modeling of thermal conductivity for disordered carbon nanotube networks
Hao Yin(殷浩), Zhiguo Liu(刘治国), and Juekuan Yang(杨决宽). Chin. Phys. B, 2023, 32(4): 044401.
[4] Advancing thermoelectrics by suppressing deep-level defects in Pb-doped AgCrSe2 alloys
Yadong Wang(王亚东), Fujie Zhang(张富界), Xuri Rao(饶旭日), Haoran Feng(冯皓然),Liwei Lin(林黎蔚), Ding Ren(任丁), Bo Liu(刘波), and Ran Ang(昂然). Chin. Phys. B, 2023, 32(4): 047202.
[5] Low-temperature heat transport of the zigzag spin-chain compound SrEr2O4
Liguo Chu(褚利国), Shuangkui Guang(光双魁), Haidong Zhou(周海东), Hong Zhu(朱弘), and Xuefeng Sun(孙学峰). Chin. Phys. B, 2022, 31(8): 087505.
[6] Reaction mechanism of metal and pyrite under high-pressure and high-temperature conditions and improvement of the properties
Yao Wang(王遥), Dan Xu(徐丹), Shan Gao(高姗), Qi Chen(陈启), Dayi Zhou(周大义), Xin Fan(范鑫), Xin-Jian Li(李欣健), Lijie Chang(常立杰),Yuewen Zhang(张跃文), Hongan Ma(马红安), and Xiao-Peng Jia(贾晓鹏). Chin. Phys. B, 2022, 31(6): 066206.
[7] Research status and performance optimization of medium-temperature thermoelectric material SnTe
Pan-Pan Peng(彭盼盼), Chao Wang(王超), Lan-Wei Li(李岚伟), Shu-Yao Li(李淑瑶), and Yan-Qun Chen(陈艳群). Chin. Phys. B, 2022, 31(4): 047307.
[8] Advances in thermoelectric (GeTe)x(AgSbTe2)100-x
Hongxia Liu(刘虹霞), Xinyue Zhang(张馨月), Wen Li(李文), and Yanzhong Pei(裴艳中). Chin. Phys. B, 2022, 31(4): 047401.
[9] Effect of carbon nanotubes addition on thermoelectric properties of Ca3Co4O9 ceramics
Ya-Nan Li(李亚男), Ping Wu(吴平), Shi-Ping Zhang(张师平), Yi-Li Pei(裴艺丽), Jin-Guang Yang(杨金光), Sen Chen(陈森), and Li Wang(王立). Chin. Phys. B, 2022, 31(4): 047203.
[10] Investigating the thermal conductivity of materials by analyzing the temperature distribution in diamond anvils cell under high pressure
Caihong Jia(贾彩红), Min Cao(曹敏), Tingting Ji(冀婷婷), Dawei Jiang(蒋大伟), and Chunxiao Gao(高春晓). Chin. Phys. B, 2022, 31(4): 040701.
[11] Facile fabrication of highly flexible, porous PEDOT: PSS/SWCNTs films for thermoelectric applications
Fu-Wei Liu(刘福伟), Fei Zhong(钟飞), Shi-Chao Wang(王世超), Wen-He Xie(谢文合), Xue Chen(陈雪), Ya-Ge Hu(胡亚歌), Yu-Ying Ge(葛钰莹), Yuan Gao(郜源), Lei Wang(王雷), and Zi-Qi Liang(梁子骐). Chin. Phys. B, 2022, 31(2): 027303.
[12] N-type core-shell heterostructured Bi2S3@Bi nanorods/polyaniline hybrids for stretchable thermoelectric generator
Lu Yang(杨璐), Chenghao Liu(刘程浩), Yalong Wang(王亚龙), Pengcheng Zhu(朱鹏程), Yao Wang(王瑶), and Yuan Deng(邓元). Chin. Phys. B, 2022, 31(2): 028204.
[13] Lattice thermal conduction in cadmium arsenide
R F Chinnappagoudra, M D Kamatagi, N R Patil, and N S Sankeshwar. Chin. Phys. B, 2022, 31(11): 116301.
[14] Unusual thermodynamics of low-energy phonons in the Dirac semimetal Cd3As2
Zhen Wang(王振), Hengcan Zhao(赵恒灿), Meng Lyu(吕孟), Junsen Xiang(项俊森), Qingxin Dong(董庆新), Genfu Chen(陈根富), Shuai Zhang(张帅), and Peijie Sun(孙培杰). Chin. Phys. B, 2022, 31(10): 106501.
[15] Accurate determination of anisotropic thermal conductivity for ultrathin composite film
Qiu-Hao Zhu(朱秋毫), Jing-Song Peng(彭景凇), Xiao Guo(郭潇), Ru-Xuan Zhang(张如轩), Lei Jiang(江雷), Qun-Feng Cheng(程群峰), and Wen-Jie Liang(梁文杰). Chin. Phys. B, 2022, 31(10): 108102.
No Suggested Reading articles found!