Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(10): 100201    DOI: 10.1088/1674-1056/26/10/100201
GENERAL   Next  

Linear and nonlinear characteristics of time-resolved photoluminescence modulation by terahertz pulse

Jiao-Li Gong(龚姣丽)1,2, Jin-Song Liu(刘劲松)1, Man Zhang(张曼)1, Zheng Chu(褚政)1, Zhen-Gang Yang(杨振刚)1, Ke-Jia Wang(王可嘉)1, Jian-Quan Yao(姚建铨)1
1. Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China;
2. Hubei Collaborative Innovation Center for High-efficient Utilization of Solar Energy, School of Science, Hubei University of Technology, Wuhan 430068, China
Abstract  The linear and nonlinear characteristics of time-resolved photoluminescence (PL) of n-type bulk semiconductor GaAs modulated with terahertz (THz) pulse are studied by using an ensemble Monte Carlo (EMC) method. In this paper the center energy valley (Γ valley) electron concentration changes with the pulse delay time, sampling time and the outfield are mainly discussed. The results show that the sampling time and the THz field should exceed certain thresholds to effectively excite photoluminescence quenching (PLQ). Adopting a direct current (DC) field makes the sampling time threshold shortened and the linear range of THz field-modulation PL expanded. Moreover, controlling the sampling time and the outfield intensity can improve the linear quality:with forward time, the larger outfield is used; with backward time, the smaller outfield is used. This study can provide a theoretical basis of THz field linear modulation in a larger range for new light emitting devices.
Keywords:  THz pulse modulation      photoluminescence      ensemble Monte Carlo      intervalley scattering  
Received:  10 April 2017      Revised:  10 May 2017      Accepted manuscript online: 
PACS:  02.50.Ng (Distribution theory and Monte Carlo studies)  
  42.65.Re (Ultrafast processes; optical pulse generation and pulse compression)  
  42.65.Sf (Dynamics of nonlinear optical systems; optical instabilities, optical chaos and complexity, and optical spatio-temporal dynamics)  
  71.55.Eq (III-V semiconductors)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11574105, 61475054, 61405063, and 61177095), the Hubei Science and Technology Agency Project, China (Grant No. 2015BCE052), and the Fundamental Research Funds for the Central Universities, China (Grant No. 2017KFYXJJ029).
Corresponding Authors:  Jin-Song Liu     E-mail:  jsliu4508@vip.sina.com

Cite this article: 

Jiao-Li Gong(龚姣丽), Jin-Song Liu(刘劲松), Man Zhang(张曼), Zheng Chu(褚政), Zhen-Gang Yang(杨振刚), Ke-Jia Wang(王可嘉), Jian-Quan Yao(姚建铨) Linear and nonlinear characteristics of time-resolved photoluminescence modulation by terahertz pulse 2017 Chin. Phys. B 26 100201

[1] Hughes S and Citrin D S 1998 Phys. Rev. B 58 R15969
[2] Gaal P, Kuehn W, Reimann K, Woerner M, Elsaesser T, Hey R, Lee J S and Schade U 2008 Phys. Rev. B 77 235204
[3] Hirori H, Nagai M and Tanaka K 2010 Phys. Rev. B 81 081305
[4] Hoffmann M C, Monozon B S, Livshits D, Rafailov E U and Turchinovich D 2010 Appl. Phys. Lett. 97 231108
[5] Hebling J, Hoffmann M C, Hwang H Y, Yeh K L and Nelson K A 2010 Phys. Rev. B 81 035201
[6] Razzari L, Su F H, Sharma G, Blanchard F, Ayesheshim A, Bandulet H C, Morandotti R, Kieffer J C, Ozaki T, Reid M and Hegmann F A 2009 Phys. Rev. B 79 193204
[7] Su F H, Blanchard F, Sharma G, Razzari L, Ayesheshim A, Cocker T L, Titova L V, Ozaki T, Kieffer J C, Morandotti R, Reid M and Hegmann F A 2009 Opt. Express 17 9620
[8] Wen H, Wiczer M and Lindenberg A M 2008 Phys. Rev. B 78 125203
[9] Hoffmann M C, Hebling J, Hwang H Y, Yeh K L and Nelson K A 2009 Phys. Rev. B 79 161201
[10] Ho I C and Zhang X C 2011 Appl. Phys. Lett. 98 241908
[11] Du L L, Li Q, Li S X, Hu F R, Xiong X M, Li Y F, Zhang W T and Han J G 2016 Chin. Phys. B 25 027301
[12] Zhou W, Ji K and Chen H M 2017 Acta Phys. Sin. 66 054210(in Chinese)
[13] Quinlan S M, Nikroo A and Sherwin M S 1992 Phys. Rev. B 45 9428
[14] Zybell S, Schneider H, Winnerl S, Wagner M, Kohler K and Helm M 2011 Appl. Phys. Lett. 99 041103
[15] Liu J, Kaur G and Zhang X C 2010 Appl. Phys. Lett. 97 111103
[16] Bhattacharyya J, Wagner M, Zybell S, Winnerl S, Stehr D, Helm M and Schneider H 2011 Rev. Sci. Instrum. 82 103107
[17] Bhattacharyya J, Zybell S, Esser F, Helm M, Schneider H, Schneebeli L, Bottge C N, Breddermann B, Kira M and Koch S W 2014 Phys. Rev. B 89 125313
[18] Zybell S, Bhattacharyya J, Winnerl S, Esser F, Helm M, Schneider H, Schneebeli L, Bottge C N, Kira M and Koch, S W 2014 Appl. Phys. Lett. 105 201109
[19] Chu Z, Liu J and Wang K 2012 Opt. Lett. 37 1433
[20] Jacoboni C and Reggiani L 1983 Rev. Mod. Phys. 55 645
[21] Lugli P, Bordone P, Reggiani L, Rieger M, Kocevar P and Goodnick S M 1989 Phys. Rev. B 39 7852
[22] Collins C L and Yu P Y 1983 Phys. Rev. B 27 2602
[23] Gong J L, Liu J S, Chu Z, Yang Z G, Wang K J and Yao J Q 2016 Chin. Phys. B 25 100203
[24] Fischetti M V 1991 IEEE Trans. Electron Dev. 38 634
[25] Johnston M B, Whittaker D M, Corchia A, Davies A G and Linfield E 2002 Phys. Rev. B 65 165301
[26] Shah J, Deveaud B, Damen T C, Tsang W T, Cossard A C and Lugli P 1987 Phys. Rev. Lett. 59 2222
[27] Elsaesser T, Shah J, Rota L and Lugli P 1991 Phys. Rev. Lett. 66 1757
[1] Thermally enhanced photoluminescence and temperature sensing properties of Sc2W3O12:Eu3+ phosphors
Yu-De Niu(牛毓德), Yu-Zhen Wang(汪玉珍), Kai-Ming Zhu(朱凯明), Wang-Gui Ye(叶王贵), Zhe Feng(冯喆), Hui Liu(柳挥), Xin Yi(易鑫), Yi-Huan Wang(王怡欢), and Xuan-Yi Yuan(袁轩一). Chin. Phys. B, 2023, 32(2): 028703.
[2] Growth behaviors and emission properties of Co-deposited MAPbI3 ultrathin films on MoS2
Siwen You(游思雯), Ziyi Shao(邵子依), Xiao Guo(郭晓), Junjie Jiang(蒋俊杰), Jinxin Liu(刘金鑫), Kai Wang(王凯), Mingjun Li(李明君), Fangping Ouyang(欧阳方平), Chuyun Deng(邓楚芸), Fei Song(宋飞), Jiatao Sun(孙家涛), and Han Huang(黄寒). Chin. Phys. B, 2023, 32(1): 017901.
[3] Enhanced photoluminescence of monolayer MoS2 on stepped gold structure
Yu-Chun Liu(刘玉春), Xin Tan(谭欣), Tian-Ci Shen(沈天赐), and Fu-Xing Gu(谷付星). Chin. Phys. B, 2022, 31(8): 087803.
[4] Exploration of structural, optical, and photoluminescent properties of (1-x)NiCo2O4/xPbS nanocomposites for optoelectronic applications
Zein K Heiba, Mohamed Bakr Mohamed, Noura M Farag, and Ali Badawi. Chin. Phys. B, 2022, 31(6): 067801.
[5] Effect of different catalysts and growth temperature on the photoluminescence properties of zinc silicate nanostructures grown via vapor-liquid-solid method
Ghfoor Muhammad, Imran Murtaza, Rehan Abid, and Naeem Ahmad. Chin. Phys. B, 2022, 31(5): 057801.
[6] Exciton luminescence and many-body effect of monolayer WS2 at room temperature
Jian-Min Wu(吴建民), Li-Hui Li(黎立辉), Wei-Hao Zheng(郑玮豪), Bi-Yuan Zheng(郑弼元), Zhe-Yuan Xu(徐哲元), Xue-Hong Zhang(张学红), Chen-Guang Zhu(朱晨光), Kun Wu(吴琨), Chi Zhang(张弛), Ying Jiang(蒋英),Xiao-Li Zhu(朱小莉), and Xiu-Juan Zhuang(庄秀娟). Chin. Phys. B, 2022, 31(5): 057803.
[7] Pressure- and temperature-dependent luminescence from Tm3+ ions doped in GdYTaO4
Peng-Yu Zhou(周鹏宇), Xiu-Ming Dou(窦秀明), Bao-Quan Sun(孙宝权), Ren-Qin Dou(窦仁琴), Qing-Li Zhang(张庆礼), Bao Liu(刘鲍), Pu-Geng Hou(侯朴赓), Kai-Lin Chi(迟凯粼), and Kun Ding(丁琨). Chin. Phys. B, 2022, 31(1): 017101.
[8] Magnetic polaron-related optical properties in Ni(II)-doped CdS nanobelts: Implication for spin nanophotonic devices
Fu-Jian Ge(葛付建), Hui Peng(彭辉), Ye Tian(田野), Xiao-Yue Fan(范晓跃), Shuai Zhang(张帅), Xian-Xin Wu(吴宪欣), Xin-Feng Liu(刘新风), and Bing-Suo Zou(邹炳锁). Chin. Phys. B, 2022, 31(1): 017802.
[9] Controllable preparation and disorder-dependent photoluminescence of morphologically different C60 microcrystals
Wen Cui(崔雯), De-Jun Li(李德军), Jin-Liang Guo(郭金良), Lang-Huan Zhao(赵琅嬛), Bing-Bing Liu(刘冰冰), and Shi-Shuai Sun(孙士帅). Chin. Phys. B, 2021, 30(8): 086101.
[10] Optical spectroscopy study of damage evolution in 6H-SiC by H$_{2}^{ + }$ implantation
Yong Wang(王勇), Qing Liao(廖庆), Ming Liu(刘茗), Peng-Fei Zheng(郑鹏飞), Xinyu Gao(高新宇), Zheng Jia(贾政), Shuai Xu(徐帅), and Bing-Sheng Li(李炳生). Chin. Phys. B, 2021, 30(5): 056106.
[11] Combined effects of carrier scattering and Coulomb screening on photoluminescence in InGaN/GaN quantum well structure with high In content
Rui Li(李睿), Ming-Sheng Xu(徐明升), Peng Wang(汪鹏), Cheng-Xin Wang(王成新), Shang-Da Qu(屈尚达), Kai-Ju Shi(时凯居), Ye-Hui Wei(魏烨辉), Xian-Gang Xu(徐现刚), and Zi-Wu Ji(冀子武). Chin. Phys. B, 2021, 30(4): 047801.
[12] Microstructure, optical, and photoluminescence properties of β -Ga2O3 films prepared by pulsed laser deposition under different oxygen partial pressures
Rui-Rui Cui(崔瑞瑞), Jun Zhang(张俊), Zi-Jiang Luo(罗子江), Xiang Guo(郭祥), Zhao Ding(丁召), and Chao-Yong Deng(邓朝勇). Chin. Phys. B, 2021, 30(2): 028505.
[13] Exciton emissions of CdS nanowire array fabricated on Cd foil by the solvothermal method
Yong Li(李勇), Peng-Fei Ji(姬鹏飞), Ya-Juan Hao(郝亚娟), Yue-Li Song(宋月丽), Feng-Qun Zhou(周丰群), and Shu-Qing Yuan(袁书卿). Chin. Phys. B, 2021, 30(1): 016104.
[14] Energy transfer, luminescence properties, and thermal stability of color tunable barium pyrophosphate phosphors
Meng-Jiao Xu(徐梦姣), Su-Xia Li(李素霞), Chen-Chen Ji(季辰辰), Wan-Xia Luo(雒晚霞), Lu-Xiang Wang(王鲁香). Chin. Phys. B, 2020, 29(6): 063301.
[15] Photoluminescence of green InGaN/GaN MQWs grown on pre-wells
Shou-Qiang Lai(赖寿强), Qing-Xuan Li(李青璇), Hao Long(龙浩), Jin-Zhao Wu(吴瑾照), Lei-Ying Ying(应磊莹), Zhi-Wei Zheng(郑志威), Zhi-Ren Qiu(丘志仁), and Bao-Ping Zhang(张保平). Chin. Phys. B, 2020, 29(12): 127802.
No Suggested Reading articles found!