Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(9): 093106    DOI: 10.1088/1674-1056/26/9/093106
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Lattice stability and the effect of Co and Re on the ideal strength of Ni: First-principles study of uniaxial tensile deformation

Minru Wen(文敏儒), Chong-Yu Wang(王崇愚)
Department of Physics, Tsinghua University, Beijing 100084, China
Abstract  

Using first-principles density functional calculations, lattice stability of γ-Ni under [001], [110], and [111] uniaxial tensions and the effect of alloying elements Co and Re on the uniaxial tensile behavior of γ-Ni were studied in this paper. With elastic constants and phonon spectra calculations, we examined the mechanical stability and phonon stability of Ni during the uniaxial tensions along the three characteristic directions. The results show that the mechanical stability and phonon stability of a lattice occurs before the maximum stress-strain point under the [001] and [111] tension, respectively. The effects of Co and Re on the ideal tensile strength of γ-Ni show a significant directivity: Co and Re have little effect on the stresses in [001] and [111] directions, but increases the ideal strength of the system in the weakest uniaxial tensile direction. Moreover, the strengthening effect of Re is significantly better than that of Co. By further analyzing electronic structure, it is found that the effect of alloying elements on the uniaxial tensile behavior of γ-Ni comes from their interactions with host atoms.

Keywords:  lattice stability      first-principles      alloying elements      uniaxial tension  
Received:  11 June 2017      Accepted manuscript online: 
PACS:  31.15.es (Applications of density-functional theory (e.g., to electronic structure and stability; defect formation; dielectric properties, susceptibilities; viscoelastic coefficients; Rydberg transition frequencies))  
  63.20.dk (First-principles theory)  
  61.66.Dk (Alloys )  
  62.20.F- (Deformation and plasticity)  
Fund: 

Project supported by Beijing Municipality Science and Technology Commission, China (Grant No. D161100002416001) and the National Key R&D Program of China (Grant No. 2017YFB0701502).

Corresponding Authors:  Chong-Yu Wang     E-mail:  cywang@mail.tsinghua.edu.cn

Cite this article: 

Minru Wen(文敏儒), Chong-Yu Wang(王崇愚) Lattice stability and the effect of Co and Re on the ideal strength of Ni: First-principles study of uniaxial tensile deformation 2017 Chin. Phys. B 26 093106

[1] Kelly A and Macmillan N H 1986 Strong Solids, 3rd edn (Oxford: Clarendon Press)
[2] Pokluda J, Černý M, Šob M and Umeno Y 2015 Prog. Mater. Sci. 73 127
[3] Krenn C R, Roundy D, Morris J W and Cohen M L 2001 Mater. Sci. Eng.: A 319 111
[4] Chrzan D C, Sherburne M P, Hanlumyuang Y, Li T and Morris Jr J W 2010 Phys. Rev. B 82 184202
[5] Sawyer C A, Morris Jr J W and Chrzan D C 2013 Phys. Rev. B 87 134106
[6] Clatterbuck D M, Krenn C R, Cohen M L and Morris Jr J W 2003 Phys. Rev. Lett. 91 135501
[7] Ogata S, Li J and Yip S 2002 Science 298 807
[8] Clatterbuck D M, Chrzan D C and Morris J W 2003 Acta Mater. 51 2271
[9] Ogata S, Li J, Hirosaki N, Shibutani Y and Yip S 2004 Phys. Rev. B 70 104104
[10] Liu Y L, Zhang Y, Zhou H B, Lu G H and Kohyama M 2008 J. Phys.: Condens. Matter 20 335216
[11] Wu X and Wang C 2016 RSC Adv. 6 20551
[12] Shang S L, Wang W Y, Wang Y, Du Y, Zhang J X, Patel A D and Liu Z K 2012 J. Phys.: Condens. Matter 24 155402
[13] Liu Y L, Zhang Y, Hong R J and Lu G H 2009 Chin. Phys. B 18 1923
[14] Zhang C L, Han P D, Wang X H, Zhang Z X, Wang L P and Xu H X 2013 Chin. Phys. B 22 126802
[15] Born M and Fürth R 1940 MPCPS, pp. 454-465
[16] Born M 1940 MPCPS, pp. 160-172
[17] Pokluda J, Černý M, Šandera P and Šob M 2004 J. Comput. Aided Mater. Des. 11 1-28
[18] Hill R and Milstein F 1977 Phys. Rev. B 15 3087
[19] Milstein F 1971 Phys. Rev. B 3 1130
[20] Wang J, Li J, Yip S, Phillpot S and Wolf D 1995 Phys. Rev. B 52 12627
[21] Wang J, Yip S, Phillpot S R and Wolf D 1993 Phys. Rev. Lett. 71 4182
[22] Zhou Z and Joós B 1996 Phys. Rev. B 54 3841
[23] Morris J W and Krenn C R 2000 Philos. Mag. A 80 2827
[24] Breidi A, Fries S G and Ruban A V 2016 Phys. Rev. B 93 144106
[25] Milstein F and Farber B 1980 Phys. Rev. Lett. 44 277
[26] Řehák P, Černý M and Šob M 2015 Modell. Simul. Mater. Sci. Eng. 23 055010
[27] Mouhat F and Coudert F X 2014 Phys. Rev. B 90 224104
[28] Zhao G L and Harmon B N 1992 Phys. Rev. B 45 2818
[29] Reháy P, Cerný M and Pokluda J 2012 J. Phys.: Condens. Matter 24 215403
[30] Miao L, Liu H J, Hu Y, Zhou X, Hu C Z and Shi J 2010 Chin. Phys. B 19 016301
[31] Reed R C 2006 The Superalloys: Fundamentals and Applications (New York: Cambridge university press)
[32] Reed R, Tao T and Warnken N 2009 Acta Mater. 57 5898
[33] Kim D, Shang S L and Liu Z K 2009 Comput. Mater. Sci. 47 254
[34] Wang Y, Wang J J, Zhang H, Manga V R, Shang S L, Chen L Q and Liu Z K 2010 J. Phys.: Condens. Matter 22 225404
[35] Shang S L, Kim D E, Zacherl C L, Wang Y, Du Y and Liu Z K 2012 J. Appl. Phys. 112 053515
[36] Wu X and Wang C 2015 J. Phys.: Condens. Matter 27 295401
[37] Wang Y and Wang C 2009 MRS Proceedings, pp. 1224-FF1205-1231
[38] Yeh A C and Tin S 2005 Scripta Mater. 52 519
[39] Tian C, Han G, Cui C and Sun X 2015 Mater. Des. 88 123
[40] Fleischmann E, Miller M K, Affeldt E and Glatzel U 2015 Acta Mater. 87 350
[41] Nye J F 1985 Physical Properties of Crystals: their Representation by Tensors and Matrices (New York: Oxford university press)
[42] Wallace D C 1998 Thermodynamics of Crystals (New York: Dover Publications)
[43] Voigt W 1928 Lehrbuch der Kristallphysik (Leipzig Berlin: Ann Arbor, Mich)
[44] Wen M and Wang C Y 2016 RSC Adv. 6 77489
[45] Hohenberg P and Kohn W 1964 Phys. Rev. 136 B864
[46] Kohn W and Sham L J 1965 Phys. Rev. 140 A1133
[47] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[48] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[49] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
[50] Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188
[51] Baroni S, De Gironcoli S, Dal Corso A and Giannozzi P 2001 Rev. Mod. Phys. 73 515
[52] Togo A, Oba F and Tanaka I 2008 Phys. Rev. B 78 134106
[53] Togo A and Tanaka I 2015 Scripta Mater. 108 1
[1] Effects of phonon bandgap on phonon-phonon scattering in ultrahigh thermal conductivity θ-phase TaN
Chao Wu(吴超), Chenhan Liu(刘晨晗). Chin. Phys. B, 2023, 32(4): 046502.
[2] First-principles study of the bandgap renormalization and optical property of β-LiGaO2
Dangqi Fang(方党旗). Chin. Phys. B, 2023, 32(4): 047101.
[3] Prediction of one-dimensional CrN nanostructure as a promising ferromagnetic half-metal
Wenyu Xiang(相文雨), Yaping Wang(王亚萍), Weixiao Ji(纪维霄), Wenjie Hou(侯文杰),Shengshi Li(李胜世), and Peiji Wang(王培吉). Chin. Phys. B, 2023, 32(3): 037103.
[4] Rational design of Fe/Co-based diatomic catalysts for Li-S batteries by first-principles calculations
Xiaoya Zhang(张晓雅), Yingjie Cheng(程莹洁), Chunyu Zhao(赵春宇), Jingwan Gao(高敬莞), Dongxiao Kan(阚东晓), Yizhan Wang(王义展), Duo Qi(齐舵), and Yingjin Wei(魏英进). Chin. Phys. B, 2023, 32(3): 036803.
[5] Single-layer intrinsic 2H-phase LuX2 (X = Cl, Br, I) with large valley polarization and anomalous valley Hall effect
Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), Yuan-Shuo Liu(刘元硕), Shuai Fu(傅帅),Xiao-Ning Cui(崔晓宁), Yi-Hao Wang(王易昊), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(3): 037306.
[6] Li2NiSe2: A new-type intrinsic two-dimensional ferromagnetic semiconductor above 200 K
Li-Man Xiao(肖丽蔓), Huan-Cheng Yang(杨焕成), and Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2023, 32(3): 037501.
[7] First-principles prediction of quantum anomalous Hall effect in two-dimensional Co2Te lattice
Yuan-Shuo Liu(刘元硕), Hao Sun(孙浩), Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(2): 027101.
[8] First-principles study on β-GeS monolayer as high performance electrode material for alkali metal ion batteries
Meiqian Wan(万美茜), Zhongyong Zhang(张忠勇), Shangquan Zhao(赵尚泉), and Naigen Zhou(周耐根). Chin. Phys. B, 2022, 31(9): 096301.
[9] Effects of oxygen concentration and irradiation defects on the oxidation corrosion of body-centered-cubic iron surfaces: A first-principles study
Zhiqiang Ye(叶志强), Yawei Lei(雷亚威), Jingdan Zhang(张静丹), Yange Zhang(张艳革), Xiangyan Li(李祥艳), Yichun Xu(许依春), Xuebang Wu(吴学邦), C. S. Liu(刘长松), Ting Hao(郝汀), and Zhiguang Wang(王志光). Chin. Phys. B, 2022, 31(8): 086802.
[10] Machine learning potential aided structure search for low-lying candidates of Au clusters
Tonghe Ying(应通和), Jianbao Zhu(朱健保), and Wenguang Zhu(朱文光). Chin. Phys. B, 2022, 31(7): 078402.
[11] Bandgap evolution of Mg3N2 under pressure: Experimental and theoretical studies
Gang Wu(吴刚), Lu Wang(王璐), Kuo Bao(包括), Xianli Li(李贤丽), Sheng Wang(王升), and Chunhong Xu(徐春红). Chin. Phys. B, 2022, 31(6): 066205.
[12] Alloying and magnetic disordering effects on phase stability of Co2 YGa (Y=Cr, V, and Ni) alloys: A first-principles study
Chun-Mei Li(李春梅), Shun-Jie Yang(杨顺杰), and Jin-Ping Zhou(周金萍). Chin. Phys. B, 2022, 31(5): 056105.
[13] First-principles calculations of the hole-induced depassivation of SiO2/Si interface defects
Zhuo-Cheng Hong(洪卓呈), Pei Yao(姚佩), Yang Liu(刘杨), and Xu Zuo(左旭). Chin. Phys. B, 2022, 31(5): 057101.
[14] Evaluation of performance of machine learning methods in mining structure—property data of halide perovskite materials
Ruoting Zhao(赵若廷), Bangyu Xing(邢邦昱), Huimin Mu(穆慧敏), Yuhao Fu(付钰豪), and Lijun Zhang(张立军). Chin. Phys. B, 2022, 31(5): 056302.
[15] Topological properties of Sb(111) surface: A first-principles study
Shuangxi Wang(王双喜) and Ping Zhang(张平). Chin. Phys. B, 2022, 31(4): 047105.
No Suggested Reading articles found!