Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(9): 093107    DOI: 10.1088/1674-1056/26/9/093107
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

First principles study and comparison of vibrational and thermodynamic properties of XBi (X= In, Ga, B, Al)

Raheleh Pilevar Shahri, Arsalan Akhtar
Department of Physics, Payame Noor University, Tehran, Iran
Abstract  In the present work, vibrational and thermodynamic properties of XBi (X=B, Al, Ga, In) compounds are compared and investigated. The calculation is carried out using density functional theory (DFT) within the generalized gradient approximation (GGA) in a plane wave basis, with ultrasoft pseudopotentials. The lattice dynamical properties are calculated using density functional perturbation theory (DFPT) as implemented in Quantum ESPRESSO (QE) code. Thermodynamic properties involving phonon density of states (DOS) and specific heat at constant volume are investigated using quasi-harmonic approximation (QHA) package within QE. The phonon dispersion diagrams for InBi, GaBi, BBi, and AlBi indicate that there is no imaginary phonon frequency in the entire Brillouin zone, which proves the dynamical stability of these materials. BBi has the highest thermal conductivity and InBi has the lowest thermal conductivity. AlBi has the largest and GaBi has the smallest reststrahlen band which somehow suggests the polar property of XBi materials. The phonon gaps for InBi, GaBi, BBi and AlBi are about 160 cm-1, 150 cm-1, 300 cm-1, and 150 cm-1, respectively. For all compounds, the three acoustic modes near the gamma point have a linear behavior. CV is a function of T3 at low temperatures while for higher temperatures it asymptotically tends to a constant as expected.
Keywords:  phonon dispersion      reststrahlen band      acoustic modes      optical modes specific heat  
Received:  22 January 2017      Revised:  04 June 2017      Accepted manuscript online: 
PACS:  31.15.es (Applications of density-functional theory (e.g., to electronic structure and stability; defect formation; dielectric properties, susceptibilities; viscoelastic coefficients; Rydberg transition frequencies))  
  63.20.dk (First-principles theory)  
  65.40.Ba (Heat capacity)  
  65.40.gd (Entropy)  
Corresponding Authors:  Raheleh Pilevar Shahri     E-mail:  ra_pilevar@yahoo.com

Cite this article: 

Raheleh Pilevar Shahri, Arsalan Akhtar First principles study and comparison of vibrational and thermodynamic properties of XBi (X= In, Ga, B, Al) 2017 Chin. Phys. B 26 093107

[1] Ma K Y, Fang Z M, Cohen R M and Stringfellow G B 1992 J. Electron. Mater. 21 143
[2] Oe K and Okamoto H 1998 Jpn J. Appl. Phys. 37 L1283
[3] Oszwaldowski M Berus T, Szade J, Jozwiak K, Olejnikzak I and Konarski P 2001 Cryst. Res. Technol. 36 1155
[4] Oe K 2002 Jpn. J. Appl. Phys. 41 2801
[5] Francoeur S, Seong M J, Mascarenhas A, Tixier S, Adamcyk M and Tiedje T 2003 Appl. Phys. Lett. 82 3874
[6] Tixier S, Adamcyk M, Tiedje T, Francoeur S, Mascarenhas A, Wei P and Schiettekatte F 2003 Appl. Phys. Lett. 82 2245
[7] Vaddiraju S, Sunkara M K, Chin A H, Ning C Z, Dholakia G R and Meyyappan 2007 J. Phys. Chem. C 111 7339
[8] Wang S and Ye H 2002 Phys. Rev. B 66 235111
[9] Janotti A, Wei S H and Zhang S 2002 Phys. Rev. B 65 115203
[10] Knittle E, Wentzcovitch R M, Jeanloz R and Cohen M L 1989 Nature 337 349
[11] Garcia A and Cohen M L 1993 Phys. Rev. B 47 4215
[12] Wentzcovitch R M, Cohen M L and Lam P K 1987 Phys. Rev. B 36 6058
[13] Wettling W and Windscheif J 1984 Solid State Commun. 50 33
[14] Zhang Y, Mascarenhas A and Wang L W 2005 Phys. Rev. B 71 155201
[15] Madouri D and Ferhat M 2005 Phys. Status Solidi B 242 285
[16] Ferhat M and Zaoui A 2006 Phys. Rev. B 73 115107
[17] Fluegel B, Francoeur S, Mascarenhas A, Tixier S, Young E C and Tiedje T 2006 Phys. Rev. Lett. 97 067205
[18] Madouri D, Boukra A, Zaoui A and Ferhat M 2008 Comp. Mater. Sci. 43 818
[19] Jorgensen J D and Clark J B 1980 Phys. Rev. B 22 6149
[20] Degtyareva V F, Winzenick M and Holzapfel W B 1998 Phys. Rev. B 57 4975
[21] Francoeur S, Seong M J, Mascarenhas A, Tixier S, Adamcyk M and Tiedje T 2003 Appl. Phys. Lett. 82 3874
[22] Amrani B, Achour H, Louhibi S, Tebboune A and Sekkal N 2008 Solid State Commun. 148 59
[23] Belabbes A, Zaoui A and Ferhat M 2008 J. Phys. -Condens. Mat. 20 415221
[24] Rahim N A A, Ahmed R, Haq B U, Mohamad M, Shaari A, Ali N and Goumri-Said S 2016 Comp. Mater. Sci. 114 40
[25] Cang Y P, Lian S B, Yang H M and Chen D 2016 Chin. Phys. Lett. 33 066301
[26] Wu J H and Liu C X 2016 Chin. Phys. Lett. 33 036202
[27] Feng S Q Li J Y and Cheng X L 2015 Chin. Phys. Lett. 32 036301
[28] Wang J F, Fu X N, Zhang X D, Wang J T, Li X D and Jiang Z Y 2016 Chin. Phys. B 25 086302
[29] Hohenberg P and Kohn W 1964 Phys. Rev. B 136 864
[30] Vanderbilt D 1985 Phys. Rev. B 32 8412
[31] Baroni S, de Gironcoli S, Dal Corso A and Giannozzi P 2001 Rev. Mod. Phys. 73 515
[32] Monkhorst H J and Park J D 1976 Phys. Rev. B 13 5188
[33] Baroni S 2011 EPJ Web of Conferences 14 02001
[34] Lyddane R H, Sachs R G and Teller E 1941 Phys. Rev. 59 673
[1] Tunable enhanced spatial shifts of reflective beam on the surface of a twisted bilayer of hBN
Yu-Bo Li(李宇博), Hao-Yuan Song(宋浩元), Yu-Qi Zhang(张玉琦), Xiang-Guang Wang(王相光),Shu-Fang Fu(付淑芳), and Xuan-Zhang Wang(王选章). Chin. Phys. B, 2022, 31(6): 064207.
[2] Phonon dispersion relations of crystalline solids based on LAMMPS package
Zhiyong Wei(魏志勇), Tianhang Qi(戚天航), Weiyu Chen(陈伟宇), and Yunfei Chen(陈云飞). Chin. Phys. B, 2021, 30(11): 114301.
[3] Novel structures and mechanical properties of Zr2N: Ab initio description under high pressures
Minru Wen(文敏儒), Xing Xie(谢兴), Zhixun Xie(谢植勋), Huafeng Dong(董华锋), Xin Zhang(张欣), Fugen Wu(吴福根), and Chong-Yu Wang(王崇愚). Chin. Phys. B, 2021, 30(1): 016403.
[4] An ab initio investigation of vibrational, thermodynamic, and optical properties of Sc2AlC MAX compound
M A Ali, M T Nasir, M R Khatun, A K M A Islam, S H Naqib. Chin. Phys. B, 2016, 25(10): 103102.
[5] Phonon dispersion on Ag (100) surface: A modified analytic embedded atom method study
Xiao-Jun Zhang(张晓军) and Chang-Le Chen(陈长乐). Chin. Phys. B, 2016, 25(1): 016301.
[6] The electronic structures, Born effective charge tensors, and phonon properties of cubic, tetragonal, orthorhombic, and rhombohedral K0.5Na0.5NbO3: A first-principles comparative study
Zhou Shu-Lan (周树兰), Zhao Xian (赵显), Jiang Xiang-Ping (江向平), Han Xiao-Dong (韩晓东). Chin. Phys. B, 2014, 23(12): 127102.
[7] High-pressure phonon dispersion of copper by using the modified analytic embedded atom method
Zhang Xiao-Jun (张晓军), Chen Chang-Le (陈长乐), Feng Fei-Long (凤飞龙). Chin. Phys. B, 2013, 22(9): 096301.
[8] Thermodynamic properties of 3C–SiC
B. Y. Thakore, S. G. Khambholja, A. Y. Vahora, N. K. Bhatt, A. R. Jani. Chin. Phys. B, 2013, 22(10): 106401.
[9] Phonon dispersion relations and soft modes of 4? carbon nanotubes
Miao Ling(缪灵), Liu Hui-Jun(刘惠军), Hu Yi(胡懿), Zhou Xiang(周详), Hu Cheng-Zheng(胡承正), and Shi Jing(石兢). Chin. Phys. B, 2010, 19(1): 016301.
[10] A general Möbius inversion transform formula for hcp lattices and its application
Li Mi (李泌), Li Yi-Shan (李一山). Chin. Phys. B, 2002, 11(4): 332-338.
No Suggested Reading articles found!