Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(9): 090203    DOI: 10.1088/1674-1056/26/9/090203
GENERAL Prev   Next  

Stochastic responses of tumor—immune system with periodic treatment

Dong-Xi Li(李东喜)1, Ying Li(李颖)2
1 College of Data Science, Taiyuan University of Technology, Taiyuan 030024, China;
2 College of Mathematics, Taiyuan University of Technology, Taiyuan 030024, China
Abstract  We investigate the stochastic responses of a tumor-immune system competition model with environmental noise and periodic treatment. Firstly, a mathematical model describing the interaction between tumor cells and immune system under external fluctuations and periodic treatment is established based on the stochastic differential equation. Then, sufficient conditions for extinction and persistence of the tumor cells are derived by constructing Lyapunov functions and Ito's formula. Finally, numerical simulations are introduced to illustrate and verify the results. The results of this work provide the theoretical basis for designing more effective and precise therapeutic strategies to eliminate cancer cells, especially for combining the immunotherapy and the traditional tools.
Keywords:  stochastic responses      environmental noise      tumor-immune system      extinction  
Received:  26 February 2017      Revised:  09 May 2017      Accepted manuscript online: 
PACS:  02.50.-r (Probability theory, stochastic processes, and statistics)  
  05.40.-a (Fluctuation phenomena, random processes, noise, and Brownian motion)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11402157 and 11571009), Shanxi Scholarship Council of China (Grant No. 2015-032), Technological Innovation Programs of Higher Education Institutions in Shanxi, China (Grant No. 2015121), and Applied Basic Research Programs of Shanxi Province, China (Grant No. 2016021013).
Corresponding Authors:  Dong-Xi Li     E-mail:  dxli0426@126.com

Cite this article: 

Dong-Xi Li(李东喜), Ying Li(李颖) Stochastic responses of tumor—immune system with periodic treatment 2017 Chin. Phys. B 26 090203

[1] Parish C R 2003 Immunol. Cell. Biol 81 106
[2] Smyth M J, Godfrey D I and Trapani J A 2001 Nat. Immunol. 2 293
[3] Rosenberg S A, Spiess P and Lafreniere R 1986 Science 233 1318
[4] Kuznetsoz V A, Makalkin I A, Taylor M A and Perelson A S 1994 Bull. Math. Biol 56 295
[5] Kirschner D and Panetta J C 1998 J. Math. Biol 37 235
[6] Wang K K and Liu X B 2013 Chin. Phys. Lett 30 070504
[7] Yang Y G, Xu W, Sun Y H and Gu X D 2016 Chin. Phys. B 25 020201
[8] Zhong W R, Shao Y Z and He Z H 2006 Phys. Rev. E 73 060902
[9] Albano G and Giorno V 2006 J. Theor Biol 242 329
[10] Lenbury Y, Triampo Wannapong, Tang I M and Picha P 2006 J. Korean. Phys. Soc 49 1652
[11] Ferrante L, Bompadre S, Possati L and Leone L 2000 Biometrics 56 1076
[12] Thibodeaux J J and Schlittenhardt T P 2011 Bull. Math. Biol. 73 2791
[13] Sotolongo-Costam O, Molina L M, Perez D R, Antranz J C and Reys M C 2003 Physica D 178 242
[14] Ideta A M, Tanaka G, Takeuchi T and Aihara K 2008 J. Nonlinear Sci. 18 593
[15] Li D X, Xu W, Guo Y and Xu Y 2011 Phys. Lett. A 375 886
[16] Aisu R and Horita T 2012 Nonlinear Theory and Its Applications, IEICE 3 191
[17] Galach M 2003 Int. J. Appl. Math. Comput. Sci. 13 395
[18] Fiasconaro A, Spagnolo B, Ochabmarcinek A and Gudowskanowak E 2006 Phys. Rev. E 74 041904
[19] Fiasconaro A, Ochab-Marcinek A, Spagnolo B and Gudowska-Nowak E 2008 Eur. Phys. J. B 65 435
[20] Liu M and Wang K 2011 J. Math. Anal. Appl. 375 443
[21] Mao X, Marion G and Renshaw E 2002 Stoch. Proc. Appl. 97 95
[22] Zhao Y, Jiang D and O'Regan D 2013 Physica A 392 4916
[23] Evans L C 2013 An Introduction to Stochastic Differential Equations (New York: Amer Mathematical Society) pp.77-79
[24] Mao X 1997 Stochastic Differential Equations and Applications (Chichester: Horwood) pp.31-84
[25] Higham D J 2001 SIAM Rev. 43 525
[26] Liu M and Bai C 2016 Appl. Math. Comput. 284 308
[27] Liu M and Bai C 2016 Appl. Math. Comput. 276 301
[28] Jin Y F and Xie W X 2015 Chin. Phys. B 24 110501
[1] Design of a polarization splitter for an ultra-broadband dual-core photonic crystal fiber
Yongtao Li(李永涛), Jiesong Deng(邓洁松), Zhen Yang(阳圳), Hui Zou(邹辉), and Yuzhou Ma(马玉周). Chin. Phys. B, 2022, 31(5): 054215.
[2] Dynamics analysis in a tumor-immune system with chemotherapy
Hai-Ying Liu(刘海英), Hong-Li Yang(杨红丽), and Lian-Gui Yang(杨联贵). Chin. Phys. B, 2021, 30(5): 058201.
[3] Dynamical analysis for hybrid virus infection system in switching environment
Dong-Xi Li(李东喜), Ni Zhang(张妮). Chin. Phys. B, 2020, 29(9): 090201.
[4] Extinction mechanisms of hyperbolic h-BN nanodisk
Runkun Chen(陈闰堃), Jianing Chen(陈佳宁). Chin. Phys. B, 2020, 29(5): 057802.
[5] Design of diamond-shape photonic crystal fiber polarization filter based on surface plasma resonance effect
Yongxia Zhang(张永霞), Jinhui Yuan(苑金辉), Yuwei Qu(屈玉玮), Xian Zhou(周娴), Binbin Yan(颜玢玢), Qiang Wu(吴强), Kuiru Wang(王葵如), Xinzhu Sang(桑新柱), Keping Long(隆克平), Chongxiu Yu(余重秀). Chin. Phys. B, 2020, 29(3): 034208.
[6] Vertical profile of aerosol extinction based on the measurement of O4 of multi-elevation angles with MAX-DOAS
Fusheng Mou(牟福生), Jing Luo(雒静), Suwen Li(李素文), Wei Shan(单巍), Lisha Hu(胡丽莎). Chin. Phys. B, 2019, 28(8): 084212.
[7] Feasibility analysis for acquiring visibility based on lidar signal using genetic algorithm-optimized back propagation algorithm
Guo-Dong Sun(孙国栋), Lai-An Qin(秦来安), Zai-Hong Hou(侯再红), Xu Jing(靖旭), Feng He(何枫), Feng-Fu Tan(谭逢富), Si-Long Zhang(张巳龙), Shou-Chuan Zhang(张守川). Chin. Phys. B, 2019, 28(2): 024213.
[8] Effects of thickness & shape on localized surface plasmon resonance of sexfoil nanoparticles
Yan Chen(陈艳), Xianchao Liu(刘贤超), Weidong Chen(陈卫东), Zhengwei Xie(谢征微), Yuerong Huang(黄跃容), Ling Li(李玲). Chin. Phys. B, 2017, 26(1): 017807.
[9] Theoretical simulation of a polarization splitter based on dual-core soft glass PCF with micron-scale gold wire
Qiang Liu(刘强), Shuguang Li(李曙光), Xinyu Wang(王新宇), Min Shi(石敏). Chin. Phys. B, 2016, 25(12): 124210.
[10] Effects of two types of noise and switching on the asymptotic dynamics of an epidemic model
Xu Wei (徐伟), Wang Xi-Ying (王喜英), Liu Xin-Zhi (刘新芝). Chin. Phys. B, 2015, 24(5): 050204.
[11] Influence of the environmental noise on determining the period of a torsion pendulum
Luo Jie (罗杰), Tian Yuan (田苑), Shao Cheng-Gang (邵成刚), Wang Dian-Hong (王典洪). Chin. Phys. B, 2015, 24(3): 030401.
[12] Stability of a delayed predator–prey model in a random environment
Jin Yan-Fei (靳艳飞), Xie Wen-Xian (谢文贤). Chin. Phys. B, 2015, 24(11): 110501.
[13] Optical study of Ba(MnxTi(1-x)O3) thin films by spectroscopic ellipsometry
Zhang Ting (张婷), Yin Jiang (殷江), Ding Ling-Hong (丁玲红), Zhang Wei-Feng (张伟风). Chin. Phys. B, 2013, 22(11): 117801.
[14] Attenuation characteristics of a light attenuator combined by polarizers with different extinction ratios
Huang Chong (黄翀), Deng Peng (邓鹏), Zhao Shuang (赵爽), Chen Hai-Qing (陈海清). Chin. Phys. B, 2011, 20(8): 084209.
[15] Controlling optical properties of periodic gold nanoparticle arrays by changing the substrate, topologic shapes of nanoparticles, and polarization direction of incident light
Li Ting(李婷), Yu Li(于丽), Lu Zhi-Xin(逯志欣), Song Gang(宋钢), and Zhang Kai(张恺) . Chin. Phys. B, 2011, 20(8): 087805.
No Suggested Reading articles found!