Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(12): 124210    DOI: 10.1088/1674-1056/25/12/104210
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Theoretical simulation of a polarization splitter based on dual-core soft glass PCF with micron-scale gold wire

Qiang Liu(刘强), Shuguang Li(李曙光), Xinyu Wang(王新宇), Min Shi(石敏)
Key Laboratory of Metastable Materials Science and Technology, College of Science, Yanshan University, Qinhuangdao 066004, China
Abstract  

A polarization splitter based on dual-core soft glass photonic crystal fiber (PCF) filled with micron-scale gold wire is proposed. The characteristics of the polarization splitter are studied by changing the structural parameters of the PCF and the diameter of the gold wire with the finite element method (FEM). The simulation results reveal that the coupling length ratio of the soft glass-based PCF is close to 2 and the corresponding curve is more flat than that of the silica-based PCF. The broadband bandwidth is 226 nm in which the extinction ratio is lower than -20 dB by the soft glass-based PCF, i.e., from 1465 nm to 1691 nm which is competitive in the reported polarization splitters, and the bandwidth is just 32 nm by the silica-based PCF. The insertion loss by our polarization splitter is just 0.00248 dB and 0.43 dB at the wavelength of 1.47 μm and 1.55 μm. The birefringence is obviously increased and the coupling length is decreased by filling gold wire into the soft glass-based or the silica-based PCF. Also the birefringence based on the silica-based PCF is much larger than that based on the soft glass-based PCF whether or not the gold wire is introduced. The fabrication tolerance of the polarization splitter is also considered by changing the structural parameters. The polarization splitter possesses broad bandwidth, low insertion loss, simple structure and high fabrication tolerance.

Keywords:  photonic crystal fiber      polarization splitter      extinction ratio  
Received:  15 May 2016      Revised:  29 July 2016      Accepted manuscript online: 
PACS:  42.81.-i (Fiber optics)  
  42.81.Gs (Birefringence, polarization)  
  71.45.Gm (Exchange, correlation, dielectric and magnetic response functions, plasmons)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 61178026, 61475134, and 61505175).

Corresponding Authors:  Shuguang Li     E-mail:  shuguangli@ysu.edu.cn

Cite this article: 

Qiang Liu(刘强), Shuguang Li(李曙光), Xinyu Wang(王新宇), Min Shi(石敏) Theoretical simulation of a polarization splitter based on dual-core soft glass PCF with micron-scale gold wire 2016 Chin. Phys. B 25 124210

[1] Taillaert D, Chong H, Borel P I, Frandsen L H, Rue R M D L and Baets R 2003 IEEE Photon. Technol. Lett. 15 1249
[2] Dai D 2012 J. Lightwave Technol. 30 3281
[3] Tang Y, Dai D and He S 2009 IEEE Photon. Technol. Lett. 21 242
[4] Yamazaki T, Aono H, Yamauchi J and Nakano H 2008 J. Lightwave Technol. 26 3528
[5] Guan X, Wu H, Shi Y, Wosinski L and Dai D 2013 Opt. Lett. 38 3005
[6] Peng G, Tjugiarto T and Chu P 1990 Electron. Lett. 26 682
[7] Russell P St J 2006 J. Lightwave Technol. 24 4729
[8] Song Y, Hu M, Wang C, Tian Z, Xing Q, Chai L and Wang C 2008 IEEE Photon. Technol. Lett. 20 1088
[9] Cucinotta A, Poli F and Selleri S 2004 IEEE Photon. Technol. Lett. 16 2027
[10] Zhu X P, Li S, Du Y, Han Y, Zhang W, Ruan Y, Heike E, Shahraam A and Tanya M M 2013 Chin. Phys. B 22 014215
[11] Matsui T, Nakajima K and Sankawa I 2007 J. Lightwave Technol. 25 757
[12] Chen L, Zhang W, Wang L, Bai Z, Zhang S, Wang B, Yan T and Jonathan S 2014 Chin. Phys. B 23 104220
[13] Qin W, Li S, Xue J, Xin X and Zhang L 2013 Chin. Phys. B 22 074213
[14] Zhang L and Yang C 2004 IEEE Photon. Technol. Lett. 16 1670
[15] Saitoh K, Sato Y and Koshiba M 2004 Opt. Express 12 3940
[16] Chiang J, Sun N, Lin S and Liu W 2010 J. Lightwave Technol. 28 707
[17] Chen M, Sun B, Zhang Y and Fu X 2010 Appl. Opt. 49 3042
[18] Zhang L and Yang C 2003 Opt. Express 11 1015
[19] Liu S, Li S, Yin G, Feng R and Wang X 2012 Opt. Commun. 285 1097
[20] Zhang L and Yang C 2004 J. Lightwave Technol. 22 1367
[21] Jiang H, Wang E, Zhang J, Hu L, Mao Q, Li Q and Xie K 2014 Opt. Express 22 30461
[22] Hameed M F O and Obayya S S A 2011 IEEE J. Quantum Electron. 47 1283
[23] Chen H, Li S, Fan Z, An G, Li J and Han Y 2014 IEEE Photon. J. 6 1
[24] Hameed M F O and Obayya S S A 2009 IEEE Photon. J. 1 265
[25] Fan Z, Li S, Fan Y, Zhang W, An G and Bao Y 2014 Chin. Phys. B 23 094212
[26] Sun B, Chen M, Zhou J and Zhang Y 2013 Plasmonics 8 1253
[27] Sazio P J A, Amezcua C A, Finlayson C E, et al. 2006 Science 311 1583
[28] Zhang X, Wang R, Cox F M, Kuhlmey B T and Large M C J 2007 Opt. Express 15 16270
[29] Lee H W, Schmidt M A, Tyagi H K, Sempere L P and Russell P St J 2008 Appl. Phys. Lett. 93 111102
[30] Ghosh G 1995 J. Am. Ceram. Soc. 78 2828
[31] Vial A, Grimault A, Macías D, Barchiesi D and Chapelle M 2005 Phys. Rev. B 71 085416
[32] Liu Q, Li S and Chen H 2015 IEEE Photon. J. 7 2700210
[33] Nagasaki A, Saitoh K and Koshiba M 2011 Opt. Express 19 3799
[34] Kuhlmey B, Renversez G and Maystre D 2003 Appl. Opt. 42 634
[35] Zhang S, Yu X, Zhang Y, Shum P, Zhang Y, Xia L and Liu D 2012 IEEE Photon. J. 4 1178
[36] Florous N, Saitoh K and Koshiba M 2005 Opt. Express 13 7365
[37] Chang K and Huang C 2016 Sci. Rep. 6 19609
[1] Multi-band polarization switch based on magnetic fluid filled dual-core photonic crystal fiber
Lianzhen Zhang(张连震), Xuedian Zhang(张学典), Xiantong Yu(俞宪同), Xuejing Liu(刘学静), Jun Zhou(周军), Min Chang(常敏), Na Yang(杨娜), and Jia Du(杜嘉). Chin. Phys. B, 2023, 32(2): 024205.
[2] High sensitivity dual core photonic crystal fiber sensor for simultaneous detection of two samples
Pibin Bing(邴丕彬), Guifang Wu(武桂芳), Qing Liu(刘庆), Zhongyang Li(李忠洋),Lian Tan(谭联), Hongtao Zhang(张红涛), and Jianquan Yao(姚建铨). Chin. Phys. B, 2022, 31(8): 084208.
[3] Generation of mid-infrared supercontinuum by designing circular photonic crystal fiber
Ying Huang(黄颖), Hua Yang(杨华), and Yucheng Mao(毛雨澄). Chin. Phys. B, 2022, 31(5): 054211.
[4] Design of a polarization splitter for an ultra-broadband dual-core photonic crystal fiber
Yongtao Li(李永涛), Jiesong Deng(邓洁松), Zhen Yang(阳圳), Hui Zou(邹辉), and Yuzhou Ma(马玉周). Chin. Phys. B, 2022, 31(5): 054215.
[5] High sensitivity plasmonic temperature sensor based on a side-polished photonic crystal fiber
Zhigang Gao(高治刚), Xili Jing(井西利), Yundong Liu(刘云东), Hailiang Chen(陈海良), and Shuguang Li(李曙光). Chin. Phys. B, 2022, 31(2): 024207.
[6] Mid-infrared supercontinuum and optical frequency comb generations in a multimode tellurite photonic crystal fiber
Xu Han(韩旭), Ying Han(韩颖), Chao Mei(梅超), Jing-Zhao Guan(管景昭), Yan Wang(王彦), Lin Gong(龚琳), Jin-Hui Yuan(苑金辉), and Chong-Xiu Yu(余重秀). Chin. Phys. B, 2021, 30(9): 094207.
[7] Generation of wideband tunable femtosecond laser based on nonlinear propagation of power-scaled mode-locked femtosecond laser pulses in photonic crystal fiber
Zhiguo Lv(吕志国) and Hao Teng(滕浩). Chin. Phys. B, 2021, 30(4): 044209.
[8] Tunable and highly sensitive temperature sensor based on graphene photonic crystal fiber
Xu Cheng(程旭), Xu Zhou(周旭), Chen Huang(黄琛), Can Liu(刘灿), Chaojie Ma(马超杰), Hao Hong(洪浩), Wentao Yu(于文韬), Kaihui Liu(刘开辉), and Zhongfan Liu(刘忠范). Chin. Phys. B, 2021, 30(11): 118103.
[9] Design of diamond-shape photonic crystal fiber polarization filter based on surface plasma resonance effect
Yongxia Zhang(张永霞), Jinhui Yuan(苑金辉), Yuwei Qu(屈玉玮), Xian Zhou(周娴), Binbin Yan(颜玢玢), Qiang Wu(吴强), Kuiru Wang(王葵如), Xinzhu Sang(桑新柱), Keping Long(隆克平), Chongxiu Yu(余重秀). Chin. Phys. B, 2020, 29(3): 034208.
[10] Refractive index sensor based on high-order surface plasmon resonance in gold nanofilm coated photonic crystal fiber
Zhen-Kai Fan(范振凯), Shao-Bo Fang(方少波), Shu-Guang Li(李曙光), Zhi-Yi Wei(魏志义). Chin. Phys. B, 2019, 28(9): 094209.
[11] Design and optimization of microstructure optical fiber sensor based on bimetal plasmon mode interaction
Meng Wu(吴萌), Xin-Yu Liu(刘欣宇), Gui-Yao Zhou(周桂耀), Chang-Ming Xia(夏长明), Bo-Yao Li(李波瑶), Zhi-Yun Hou(侯峙云). Chin. Phys. B, 2019, 28(12): 124202.
[12] High birefringence, low loss, and flattened dispersion photonic crystal fiber for terahertz application
Dou-Dou Wang(王豆豆), Chang-Long Mu(穆长龙), De-Peng Kong(孔德鹏), Chen-Yu Guo(郭晨瑜). Chin. Phys. B, 2019, 28(11): 118701.
[13] Numerical investigation on coherent mid-infrared supercontinuum generation in chalcogenide PCFs with near-zero flattened all-normal dispersion profiles
Jie Han(韩杰), Sheng-Dong Chang(常圣东), Yan-Jia Lyu(吕彦佳), Yong Liu(刘永). Chin. Phys. B, 2019, 28(10): 104204.
[14] Study on polarization properties of graphene coated D-shaped fiber
Xuejing Liu(刘学静), Luwen Yang(杨禄文), Jingyun Ma(马敬云), Caili Li(李彩丽), Wa Jin(金娃), Weihong Bi(毕卫红). Chin. Phys. B, 2018, 27(10): 104206.
[15] Design of photonic crystal fiber with elliptical air-holes to achieve simultaneous high birefringence and nonlinearity
Min Liu(刘敏), Jingyun Hou(侯静云), Xu Yang(杨虚), Bingyue Zhao(赵昺玥), Ping Shum. Chin. Phys. B, 2018, 27(1): 014206.
No Suggested Reading articles found!