Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(5): 058201    DOI: 10.1088/1674-1056/abcf49
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Dynamics analysis in a tumor-immune system with chemotherapy

Hai-Ying Liu(刘海英), Hong-Li Yang(杨红丽), and Lian-Gui Yang(杨联贵)
School of Mathematical Sciences, Inner Mongolia University, Hohhot 010021, China
Abstract  An ordinary differential equation (ODE) model of tumor growth with the effect of tumor-immune interaction and chemotherapeutic drug is presented and studied. By analyzing the existence and stability of equilibrium points, the dynamic behavior of the system is discussed elaborately. The chaotic dynamics can be obtained in our model by equilibria analysis, which show the existence of chaos by calculating the Lyapunov exponents and the Lyapunov dimension of the system. Moreover, the action of the infusion rate of the chemotherapeutic drug on the resulting dynamics is investigated, which suggests that the application of chemotherapeutic drug can effectively control tumor growth. However, in the case of high-dose chemotherapeutic drug, chemotherapy-induced effector immune cells damage seriously, which may cause treatment failure.
Keywords:  dynamical model      tumor-immune system      chemotherapy      chaos  
Received:  08 September 2020      Revised:  02 November 2020      Accepted manuscript online:  01 December 2020
PACS:  82.40.Bj (Oscillations, chaos, and bifurcations)  
  87.10.Ed (Ordinary differential equations (ODE), partial differential equations (PDE), integrodifferential models)  
  87.15.A- (Theory, modeling, and computer simulation)  
  87.19.xj (Cancer)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11762011).
Corresponding Authors:  Hong-Li Yang     E-mail:  imuyhl@imu.edu.cn

Cite this article: 

Hai-Ying Liu(刘海英), Hong-Li Yang(杨红丽), and Lian-Gui Yang(杨联贵) Dynamics analysis in a tumor-immune system with chemotherapy 2021 Chin. Phys. B 30 058201

[1] Gatenby R A and Maini P K 2003 Nature 421 321
[2] Liu N, Wang D N, Liu H Y, Yang H L and Yang L G 2020 Chin. Phys. B 29 068704
[3] Hellström K E and Hellström I 1974 Advances in Immunology 18 209
[4] Boon T, Cerottini J, Den Eynde B V, Der Bruggen P V and Van Pel A 1994 Annual Review of Immunology 12 337
[5] Kuznetsov V A, Makalkin I A, Taylor M A and Perelson A S 1994 Bulletin of Mathematical Biology 56 295
[6] Kirschner D E and Panetta J C 1998 J. Math. Biol. 37 235
[7] Letellier C, Denis F and Aguirre L A 2013 J. Theor. Biol. 322 7
[8] Neoptolemos J P, Stocken D D, Friess H, Bassi C, Dunn J A, Hickey H, Beger H G, Fernandezcruz L, Dervenis C, Lacaine F, Falconi M, Pederzoli P, Pap A F, Spooner D, Kerr D J and Buchler M W 2004 The New England Journal of Medicine 350 1200
[9] Sanga S, Sinek J P, Frieboes H B, Ferrari M and Cristini V 2006 Expert Review of Anticancer Therapy 6 1361
[10] Li H, Wang C, Yu J, Cao S, Wei F, Zhang W, Han Y and Ren X 2009 Cytotherapy 11 1076
[11] Machiels J H, Reilly R T, Emens L A, Ercolini A M, Lei R Y, Weintraub D, Okoye F I and Jaffee E M 2001 Cancer Research 61 3689
[12] Nowak A K, Robinson B and Lake R A 2003 Cancer Research 63 4490
[13] Li D X and Ying L 2017 Chin. Phys. B 26 090203
[14] Dudley M E, Wunderlich J R, Robbins P F, Yang J C, Hwu P, Schwartzentruber D J, Topalian S L, Sherry R, Restifo N P, Hubicki A M, Robinson M R, Raffeld M, Duray P, Seipp C A, Rogers-Freezer L, Morton K E, Mavroukakis S A, White D E and Rosenberg S A 2002 Science 298 850
[15] Ramakrishnan R, Assudani D, Nagaraj S, Hunter T B, Cho H I, Antonia S, Celis E and Gabrilovich D I 2010 Journal of Clinical Investigation 120 1111
[16] Ahn I and Park J 2011 Biosystems 106 121
[17] Gillio A P, Gasparetto C, Laver J, Abboud M, Bonilla M A 1990 Journal of Clinical Investigation 85 1560
[18] Bunimovichmendrazitsky S, Byrne H M and Stone L 2008 Bulletin of Mathematical Biology 70 2055
[19] Bunimovichmendrazitsky S, Shochat E and Stone L 2007 Bulletin of Mathematical Biology 69 1847
[20] Castiglione F and Piccoli B 2007 J. Theor. Biol. 247 723
[21] De Pillis L G, Gu W and Radunskaya A E 2006 J. Theor. Biol. 238 841
[22] Itik M and Banks S P 2010 Int. J. Bifurc. Chaos 20 71
[23] Hao M L, Xu W, Gu X D and Qi L Y 2014 Chin. Phys. B 23 090501
[24] De Pillis L G and Radunskaya A E 2007 J. Theor. Med. 3 79
[25] De Pillis L G and Radunskaya A E 2003 Mathematical and Computer Modelling: An International Journal 37 1221
[26] De Pillis L G, Radunskaya A E and Wiseman C L 2005 Cancer Research 65 7950
[27] Usher J R 1994 Comput. Math. Appl. 28 73
[28] Pinho S T R, Freedman H I and Nani F 2002 Math. Comput. Model. 36 773
[29] Letellier C, Sasmal S K, Draghi C, Denis F, Ghosh D 2017 Chaos, Solitons and Fractals 99 297
[30] Pinho S T, Bacelar F S, Andrade R F and Freedman H I 2013 Nonlinear Analysis-Real World Applications 14 815
[31] Kamke E 1932 Acta Mathematica 58 57
[32] Kot M 2001 Elements of Mathematical Ecology (Cambridge: Cambridge University Press) pp. 365-376
[33] Viger L, Denis F, Rosalie M and Letellier C 2014 J. Theor. Biol. 360 21
[34] Borges F S, Iarosz K C, Ren H P, Batista A M, Baptista M S, Viana R L, Lopes S R and Grebogi C 2014 Biosystems 116 43
[35] Li X M and Liao S J 2018 Applied Mathematics and Mechanics (English Edition) 39 1529
[36] Cai M, Liu W F and Liu J 2013 Applied Mathematics and Mechanics (English Edition) 34 627
[37] Alvarez R F, Barbuto J A and Venegeroles R 2019 J. Theor. Biol. 471 42
[38] Wolf A, Swift J B, Swinney H L and Vastano J A 1985 Physica D: Nonlinear Phenomena 16 285
[39] De Pillis L G and Radunskaya A E 2001 J. Theor. Med. 3 79
[40] Denis F and Letellier C 2012 Cancer Radiother 16 404
[41] Denis F and Letellier C 2012 Cancer Radiother 16 230
[42] Davoli T, Xu A W, Mengwasser K E, Sack L M, Yoon J C, Park P J and Elledge S J 2013 Cell 155 948
[43] Klein K, Maier T, Hirschfeld-Warneken V C and Spatz J P 2013 Nano Lett. 13 5474
[44] Crawford S A 2017 Journal of Traditional Medicine and Clinical Naturopathy 6 1000232
[1] An incommensurate fractional discrete macroeconomic system: Bifurcation, chaos, and complexity
Abderrahmane Abbes, Adel Ouannas, and Nabil Shawagfeh. Chin. Phys. B, 2023, 32(3): 030203.
[2] Memristor hyperchaos in a generalized Kolmogorov-type system with extreme multistability
Xiaodong Jiao(焦晓东), Mingfeng Yuan(袁明峰), Jin Tao(陶金), Hao Sun(孙昊), Qinglin Sun(孙青林), and Zengqiang Chen(陈增强). Chin. Phys. B, 2023, 32(1): 010507.
[3] A novel algorithm to analyze the dynamics of digital chaotic maps in finite-precision domain
Chunlei Fan(范春雷) and Qun Ding(丁群). Chin. Phys. B, 2023, 32(1): 010501.
[4] Synchronously scrambled diffuse image encryption method based on a new cosine chaotic map
Xiaopeng Yan(闫晓鹏), Xingyuan Wang(王兴元), and Yongjin Xian(咸永锦). Chin. Phys. B, 2022, 31(8): 080504.
[5] Multi-target ranging using an optical reservoir computing approach in the laterally coupled semiconductor lasers with self-feedback
Dong-Zhou Zhong(钟东洲), Zhe Xu(徐喆), Ya-Lan Hu(胡亚兰), Ke-Ke Zhao(赵可可), Jin-Bo Zhang(张金波),Peng Hou(侯鹏), Wan-An Deng(邓万安), and Jiang-Tao Xi(习江涛). Chin. Phys. B, 2022, 31(7): 074205.
[6] Bifurcation and dynamics in double-delayed Chua circuits with periodic perturbation
Wenjie Yang(杨文杰). Chin. Phys. B, 2022, 31(2): 020201.
[7] Complex dynamic behaviors in hyperbolic-type memristor-based cellular neural network
Ai-Xue Qi(齐爱学), Bin-Da Zhu(朱斌达), and Guang-Yi Wang(王光义). Chin. Phys. B, 2022, 31(2): 020502.
[8] Energy spreading, equipartition, and chaos in lattices with non-central forces
Arnold Ngapasare, Georgios Theocharis, Olivier Richoux, Vassos Achilleos, and Charalampos Skokos. Chin. Phys. B, 2022, 31(2): 020506.
[9] Resonance and antiresonance characteristics in linearly delayed Maryland model
Hsinchen Yu(于心澄), Dong Bai(柏栋), Peishan He(何佩珊), Xiaoping Zhang(张小平), Zhongzhou Ren(任中洲), and Qiang Zheng(郑强). Chin. Phys. B, 2022, 31(12): 120502.
[10] An image encryption algorithm based on spatiotemporal chaos and middle order traversal of a binary tree
Yining Su(苏怡宁), Xingyuan Wang(王兴元), and Shujuan Lin(林淑娟). Chin. Phys. B, 2022, 31(11): 110503.
[11] Nonlinear dynamics analysis of cluster-shaped conservative flows generated from a generalized thermostatted system
Yue Li(李月), Zengqiang Chen(陈增强), Zenghui Wang(王增会), and Shijian Cang(仓诗建). Chin. Phys. B, 2022, 31(1): 010501.
[12] Control of chaos in Frenkel-Kontorova model using reinforcement learning
You-Ming Lei(雷佑铭) and Yan-Yan Han(韩彦彦). Chin. Phys. B, 2021, 30(5): 050503.
[13] Resistance fluctuations in superconducting KxFe2-ySe2 single crystals studied by low-frequency noise spectroscopy
Hai Zi(子海), Yuan Yao(姚湲), Ming-Chong He(何明冲), Di Ke(可迪), Hong-Xing Zhan(詹红星), Yu-Qing Zhao(赵宇清), Hai-Hu Wen(闻海虎), and Cong Ren(任聪). Chin. Phys. B, 2021, 30(4): 047402.
[14] A multi-directional controllable multi-scroll conservative chaos generator: Modelling, analysis, and FPGA implementation
En-Zeng Dong(董恩增), Rong-Hao Li(李荣昊), and Sheng-Zhi Du(杜升之). Chin. Phys. B, 2021, 30(2): 020505.
[15] Dynamical analysis, circuit realization, and application in pseudorandom number generators of a fractional-order laser chaotic system
Chenguang Ma(马晨光), Santo Banerjee, Li Xiong(熊丽), Tianming Liu(刘天明), Xintong Han(韩昕彤), and Jun Mou(牟俊). Chin. Phys. B, 2021, 30(12): 120504.
No Suggested Reading articles found!