Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(8): 087805    DOI: 10.1088/1674-1056/20/8/087805
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Controlling optical properties of periodic gold nanoparticle arrays by changing the substrate, topologic shapes of nanoparticles, and polarization direction of incident light

Li Ting(李婷)a)b), Yu Li(于丽)a)b)†, Lu Zhi-Xin(逯志欣)a)b), Song Gang(宋钢)a)b), and Zhang Kai(张恺)a)b)
State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876, China; b School of Science, Beijing University of Posts and Telecommunications, Beijing 100876, China
Abstract  The effects of various parameters including thickness and dielectric constants of substrates, shapes of nanoparticles, and polarization direction of incident light, on the extinction spectra of periodic gold nanoparticle arrays are investigated by the full-vectorial three-dimensional (3D) finite difference time domain (FDTD) method. The calculated results show that the substrate affects the extinction spectra by coupling the fields co-excited by the substrate and gold nanoparticles. Extinction spectra are influenced by the shapes of the nanoparticles, but there are no obvious changes in extinction spectra for similar shapes. The polarization direction of incident light has a great influence on the extinction spectra. The implications of these results are discussed.
Keywords:  localized surface plasmon      extinction spectra      gold nanoparticles  
Received:  03 November 2010      Revised:  05 May 2011      Accepted manuscript online: 
PACS:  78.67.Bf (Nanocrystals, nanoparticles, and nanoclusters)  
  78.67.+m  
  42.25.Bs (Wave propagation, transmission and absorption)  
Fund: Project supported by the National Basic Research Program of China (Grant No. 2010CB923202).

Cite this article: 

Li Ting(李婷), Yu Li(于丽), Lu Zhi-Xin(逯志欣), Song Gang(宋钢), and Zhang Kai(张恺) Controlling optical properties of periodic gold nanoparticle arrays by changing the substrate, topologic shapes of nanoparticles, and polarization direction of incident light 2011 Chin. Phys. B 20 087805

[1] Brongersma M L and Kik P G 2007 Surface Plasmon Nanophotonics (Berlin: Springer)
[2] Auguie B and Barnes W L 2008 Phys. Rev. Lett. 101 143902
[3] Huang Q, Zhang X D, Wang S, Cao L R, Sun J, Geng W D, Xiong S Z and Zhao Y 2009 Acta Phys. Sin. 58 2731 (in Chinese)
[4] Beermann J, Novikov S M, Leosson K and Bozhevolny S I 2009 Opt. Express 17 12698
[5] Bohren C F and Huffman D R 1983 Absorption and Scattering of Light by Small Particles (New York: John Wiley and Sons)
[6] Rechberger W, Hohenau A, Leitner A, Krenn J R, Lamprecht B and Aussenegg F R 2003 Opt. Commun. 220 137
[7] Tabor C, Murali R, Mahmoud M and Sayed M A E 2008 J. Phys. Chem. A 113 1946
[8] Zhang Z Y and Zhao Y P 2006 Appl. Phys. Lett. 89 023110
[9] Huang Q, Zhang X D, Zhang H, Xiong S Z, Geng W D, Geng X H and Zhao Y 2010 Chin. Phys. B 19 047304
[10] Hohenau A, Krenn J R, Beermann J, Bozhevolnyi S I, Rodrigo S G, Moreno L M and Vidal F G 2006 Phys. Rev. B 73 155404
[11] Fung K H and Chan C T 2008 Phys. Rev. B 77 205423
[12] Johnson P B and Christy R W 1972 Phys. Rev. B 6 4370
[13] Hao J, Sabarinathan J, Manifar T and Mittler S 2009 J. Lightwave Technol. 27 2264
[14] Linden S, Kuhl J and Giessen H 2001 Phys. Rev. Lett. 86 4688
[1] Multi-frequency focusing of microjets generated by polygonal prisms
Yu-Jing Yang(杨育静), De-Long Zhang(张德龙), and Ping-Rang Hua(华平壤). Chin. Phys. B, 2022, 31(3): 034201.
[2] A multi-band and polarization-independent perfect absorber based on Dirac semimetals circles and semi-ellipses array
Zhiyou Li(李治友), Yingting Yi(易颖婷), Danyang Xu(徐丹阳), Hua Yang(杨华), Zao Yi(易早), Xifang Chen(陈喜芳), Yougen Yi(易有根), Jianguo Zhang(张建国), and Pinghui Wu(吴平辉). Chin. Phys. B, 2021, 30(9): 098102.
[3] Optical absorption tunability and local electric field distribution of gold-dielectric-silver three-layered cylindrical nanotube
Ye-Wan Ma(马业万), Zhao-Wang Wu(吴兆旺), Yan-Yan Jiang(江燕燕), Juan Li(李娟), Xun-Chang Yin(尹训昌), Li-Hua Zhang(章礼华), and Ming-Fang Yi(易明芳). Chin. Phys. B, 2021, 30(11): 114207.
[4] Controlled plasmon-enhanced fluorescence by spherical microcavity
Jingyi Zhao(赵静怡), Weidong Zhang(张威东), Te Wen(温特), Lulu Ye(叶璐璐), Hai Lin(林海), Jinglin Tang(唐靖霖), Qihuang Gong(龚旗煌), and Guowei Lyu(吕国伟). Chin. Phys. B, 2021, 30(11): 114215.
[5] Photocurrent improvement of an ultra-thin silicon solar cell using the localized surface plasmonic effect of clustering nanoparticles
F Sobhani, H Heidarzadeh, H Bahador. Chin. Phys. B, 2020, 29(6): 068401.
[6] Selective excitation of multipolar surface plasmon in a graphene-coated dielectric particle by Laguerre Gaussian beam
Yang Yang(杨阳), Guanghua Zhang(张光华), Xiaoyu Dai(戴小玉). Chin. Phys. B, 2020, 29(5): 057302.
[7] Extinction mechanisms of hyperbolic h-BN nanodisk
Runkun Chen(陈闰堃), Jianing Chen(陈佳宁). Chin. Phys. B, 2020, 29(5): 057802.
[8] Large-scale control of enhancement and quenching of photoluminescence for ZnSe/ZnS quantum dots and Ag nanoparticles in aqueous solution
Shaoyi Yin(殷少轶), Liming Liao(廖李明), Song Luo(罗松), Zhe Zhang(张喆), Xiaoyu Zhang(张晓宇), Jian Lu(鹿建), Zhanghai Chen(陈张海). Chin. Phys. B, 2019, 28(5): 057803.
[9] Selective enhancement of green upconversion luminescence of Er-Yb: NaYF4 by surface plasmon resonance of W18O49 nanoflowers and applications in temperature sensing
Ang Li(李昂), Jin-Lei Wu(吴金磊), Xue-Song Xu(许雪松), Yang Liu(刘洋), Ya-Nan Bao(包亚男), Bin Dong(董斌). Chin. Phys. B, 2018, 27(9): 097301.
[10] Recent progress on photoluminescence from plasmonic nanostructures: Phenomenon, mechanism, and application
Tingting Yin(尹婷婷), Liyong Jiang(蒋立勇), Zexiang Shen(申泽骧). Chin. Phys. B, 2018, 27(9): 097803.
[11] Sputtered gold nanoparticles enhanced quantum dot light-emitting diodes
Abida Perveen, Xin Zhang(张欣), Jia-Lun Tang(汤加仑), Deng-Bao Han(韩登宝), Shuai Chang(常帅), Luo-Gen Deng(邓罗根), Wen-Yu Ji(纪文宇), Hai-Zheng Zhong(钟海政). Chin. Phys. B, 2018, 27(8): 086101.
[12] Subwavelength asymmetric Au-VO2 nanodisk dimer for switchable directional scattering
Han-Mou Zhang(张汉谋), Wu-Yun Shang(尚武云), Hua Lu(陆华), Fa-Jun Xiao(肖发俊), Jian-Lin Zhao(赵建林). Chin. Phys. B, 2018, 27(11): 117301.
[13] Ultrasensitive nanosensors based on localized surface plasmon resonances: From theory to applications
Wen Chen(陈文), Huatian Hu(胡华天), Wei Jiang(姜巍), Yuhao Xu(徐宇浩), Shunping Zhang(张顺平), Hongxing Xu(徐红星). Chin. Phys. B, 2018, 27(10): 107403.
[14] Optical interaction between one-dimensional fiber photonic crystal microcavity and gold nanorod
Yang Yu(于洋), Ting-Hui Xiao(肖廷辉), Zhi-Yuan Li(李志远). Chin. Phys. B, 2018, 27(1): 017301.
[15] Effects of thickness & shape on localized surface plasmon resonance of sexfoil nanoparticles
Yan Chen(陈艳), Xianchao Liu(刘贤超), Weidong Chen(陈卫东), Zhengwei Xie(谢征微), Yuerong Huang(黄跃容), Ling Li(李玲). Chin. Phys. B, 2017, 26(1): 017807.
No Suggested Reading articles found!