|
|
Extinction mechanisms of hyperbolic h-BN nanodisk |
Runkun Chen(陈闰堃)1,2, Jianing Chen(陈佳宁)1,2,3 |
1 Institute of Physics, Chinese Academy of Sciences and Beijing National Laboratory for Condensed Matter Physics, Beijing 100190, China; 2 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; 3 Songshan Lake Materials Laboratory, Dongguan 523808, China |
|
|
Abstract We applied the finite element method to calculate the extinction spectrum of single hyperbolic hexagonal boron nitride (h-BN) nanodisk. We show that the hyperbolic h-BN nanodisk exhibits two extinction mechanisms in the mid-infrared region. The volume confined phonon polaritons resonances of the nanodisk give rise to a series of weak extinction peaks. The localized surface phonon polaritons lead to a robust dipolar extinction, and the extinction peak position is tunable by varying the size of the h-BN nanodisk. These findings reveal the mechanisms of the interaction between light and resonant h-BN nanodisk, which are essential for h-BN related opto-electromagnetic applications.
|
Received: 07 March 2020
Revised: 03 April 2020
Accepted manuscript online:
|
PACS:
|
78.67.-n
|
(Optical properties of low-dimensional, mesoscopic, and nanoscale materials and structures)
|
|
71.35.Cc
|
(Intrinsic properties of excitons; optical absorption spectra)
|
|
71.36.+c
|
(Polaritons (including photon-phonon and photon-magnon interactions))
|
|
47.11.Fg
|
(Finite element methods)
|
|
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2016YFA0203500), the National Natural Science Foundation of China (Grant No. 11874407), and Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDB 30000000). |
Corresponding Authors:
Jianing Chen
E-mail: jnchen@iphy.ac.cn
|
Cite this article:
Runkun Chen(陈闰堃), Jianing Chen(陈佳宁) Extinction mechanisms of hyperbolic h-BN nanodisk 2020 Chin. Phys. B 29 057802
|
[1] |
Alonsogonzalez P, Nikitin A Y, Golmar F, Centeno A, Pesquera A, Velez S, Chen J, Navickaite G, Koppens F H L and Zurutuza A 2014 Science 344 1369
|
[2] |
Schnell M, Garciaetxarri A, Huber A J, Crozier K B, Borisov A G, Aizpurua J and Hillenbrand R 2010 J. Phys. Chem. C 114 7341
|
[3] |
Olmon R L, Krenz P M, Jones A C, Boreman G D and Raschke M B 2008 Opt. Express 16 20295
|
[4] |
Tian X, Gu Q, Duan J, Chen R, Liu H, Hou Y and Chen J 2018 Nanoscale 10 6288
|
[5] |
Yang C, Chen R, Jia Y, Guo L and Chen J 2017 Chin. Phys. B 26 074220
|
[6] |
Low T, Chaves A, Caldwell J D, Kumar A, Fang N X, Avouris P, Heinz T F, Guinea F, Martin-Moreno L and Koppens F 2017 Nat. Mater. 16 182
|
[7] |
Wang F and Shen Y R 2006 Phys. Rev. Lett. 97 206806
|
[8] |
Ameen M, Garciaetxarri A, Schnell M, Hillenbrand R and Aizpurua J 2010 Sci. Bull. 55 2625
|
[9] |
Amendola V, Pilot R, Frasconi M, Marago O M and Iati M A 2017 J. Phys.: Condens. Matter 29 203002
|
[10] |
Sherry L J, Jin R, Mirkin C A, Schatz G C and Van Duyne R P 2006 Nano Lett. 6 2060
|
[11] |
Duan J, Chen R and Chen J 2017 Chin. Phys. B 26 117802
|
[12] |
Shu F Z, Fan R H, Wang J N, Peng R W and Wang M 2019 Acta Phys. Sin. 68 147303 (in Chinese)
|
[13] |
Adato R and Altug H 2013 Nat. Commun. 4 2154
|
[14] |
Maier S A 2007 Plasmonics: Fundamentals and applications (Springer) pp. 65-88
|
[15] |
Zhang W, Huang L, Santschi C and Martin O J 2010 Nano Lett. 10 1006
|
[16] |
Anker J N, Hall W P, Lyandres O, Shah N C, Zhao J and Van Duyne R P 2008 Nat. Mater. 7 442
|
[17] |
Mayer K M and Hafner J H 2011 Chem. Rev. 111 3828
|
[18] |
Li Z Y and Xia Y 2010 Nano Lett. 10 243
|
[19] |
Qin K, Yuan L R, Tan J, Peng S, Wang Q J, Zhang X J, Lu Y Q and Zhu Y Y 2019 Acta Phys. Sin. 68 147401 (in Chinese)
|
[20] |
Ye Y H and Zhang J Y 2004 Appl. Phys. Lett. 84 2977
|
[21] |
Foteinopoulou S, Devarapu G C R, Subramania G S, Krishna S and Wasserman D 2019 Nanophotonics 8 2129
|
[22] |
Caldwell J D, Lindsay L, Giannini V, Vurgaftman I, Reinecke T L, Maier S A and Glembocki O J 2015 Nanophotonics 4 44
|
[23] |
Duan J, Chen R, Li J, Jin K, Sun Z and Chen J 2017 Adv. Mater. 29 1702494
|
[24] |
Basov D, Fogler M and De Abajo F G 2016 Science 354 aag1992
|
[25] |
Wang J, Mu X, Wang X, Wang N, Ma F, Liang W and Sun M 2018 Mater. Today Phys. 5 29
|
[26] |
Wang J, Xu X, Mu X, Ma F and Sun M 2017 Mater. Today Phys. 3 93
|
[27] |
Wang J, Ma F, Liang W and Sun M 2017 Mater. Today Phys. 2 6
|
[28] |
Caldwell J D, Kretinin A V, Chen Y, Giannini V, Fogler M M, Francescato Y, Ellis C T, Tischler J G, Woods C R and Giles A J 2014 Nat. Commun. 5 5221
|
[29] |
Alfaro-Mozaz F, Alonso-González P, Vélez S, Dolado I, Autore M, Mastel S, Casanova F, Hueso L, Li P and Nikitin A Y 2017 Nat. Commun. 8 1
|
[30] |
Li P, Dolado I, Alfaromozaz F J, Casanova F, Hueso L E, Liu S, Edgar J H, Nikitin A Y, Velez S and Hillenbrand R 2018 Science 359 892
|
[31] |
Dai S, Fei Z, Ma Q, Rodin A, Wagner M, McLeod A, Liu M, Gannett W, Regan W and Watanabe K 2014 Science 343 1125
|
[32] |
Bai Q, Perrin M, Sauvan C, Hugonin J P and Lalanne P 2013 Opt. Express 21 27371
|
[33] |
Bohren C F and Huffman D R 2008 Absorption and scattering of light by small particles (John Wiley & Sons)
|
[34] |
Woessner A, Lundeberg M B, Gao Y, Principi A, Alonso-González P, Carrega M, Watanabe K, Taniguchi T, Vignale G and Polini M 2015 Nat. Mater. 14 421
|
[35] |
Giles A J, Dai S, Glembocki O J, Kretinin A V, Sun Z, Ellis C T, Tischler J G, Taniguchi T, Watanabe K and Fogler M M 2016 Nano Lett. 16 3858
|
[36] |
Khurgin J B and Sun G 2011 Appl. Phys. Lett. 99 211106
|
[37] |
Dolado I, Alfaro-Mozaz F J, Li P, Nikulina E, Bylinkin A, Liu S, Edgar J H, Casanova F, Hueso L E and Alonso-González P 2020 Adv. Mater. 1906530
|
[38] |
Langhammer C, Schwind M, Kasemo B and Zoric I 2008 Nano Lett. 8 1461
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|