Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(9): 090201    DOI: 10.1088/1674-1056/ab8c3f
GENERAL   Next  

Dynamical analysis for hybrid virus infection system in switching environment

Dong-Xi Li(李东喜)1, Ni Zhang(张妮)2
1 College of Data Science, Taiyuan University of Technology, Taiyuan 030024, China;
2 College of Mathematics, Taiyuan University of Technology, Taiyuan 030024, China
Abstract  We investigate the dynamical behavior of hybrid virus infection systems with nonlytic immune response in switching environment, which is modeled as a stochastic process of telegraph noise and represented as a multi-state Markov chains. Firstly, The existence of unique positive solution and boundedness of the new hybrid system is proved. Furthermore, the sufficient conditions for extinction and persistence of virus are established. Finally, stochastic simulations are performed to test and demonstrate the conclusions. As a consequence, our work suggests that stochastic switching environment plays a crucial role in the process of virus prevention and treatment.
Keywords:  dynamical behavior      hybrid virus infection system      switching environment      extinction  
Received:  05 March 2020      Revised:  16 April 2020      Accepted manuscript online:  23 April 2020
PACS:  02.50.-r (Probability theory, stochastic processes, and statistics)  
  05.40.-a (Fluctuation phenomena, random processes, noise, and Brownian motion)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11571009) and the Applied Basic Research Programs of Shanxi Province of China (Grant No. 201901D111086).
Corresponding Authors:  Dong-Xi Li     E-mail:  dxli0426@126.com

Cite this article: 

Dong-Xi Li(李东喜), Ni Zhang(张妮) Dynamical analysis for hybrid virus infection system in switching environment 2020 Chin. Phys. B 29 090201

[1] Levin B R, Lipsitch M and Bonhoeffer S 1999 Science 283 806
[2] Bowers R 2001 Proc. R. Soc. B: Biol. Sci. 268 243
[3] Nowak M A and Bangham C R M 1996 Science 272 74
[4] Liu W M 1997 Theor. Popul. Biol. 52 224
[5] Doherty P C and Christensen J P 2000 Annu. Rev. Immunol. 18 561
[6] Lin H and Shuai J W 2010 New J. Phys. 12 043051
[7] Nagai M, Kubota R, Leist T, Jacobson S, Greten T and Schneck J 2001 J. Infectious Dis. 183 197
[8] Wodarz D 2003 J. Gen. Virol. 84 1743
[9] Wodarz D, Christensen J P and Thomsen A R 2002 Trends Immunol. 23 194
[10] Dalal N, Greenhalgh D and Mao X 1993 Math. Biosci. 114 81
[11] Merrill S J 1989 Modeling the Interaction of HIV with Cells of the Immune System (Berlin: Springer-Verlag) pp. 371-385
[12] Perelson A, Kirschner D and Boer R 1993 Math. Biosci. 114 81
[13] Wain-Hobson S 2000 J. Virol. 74 10304
[14] Bartholdy C, Christensen J P, Wodarz D and Thomsen A R 2000 J. Virol. 74 10304
[15] Li D X and Cui X W 2017 Chaos Solitons Fractals. 99 124
[16] Li D X, Zhao Y and Song S L 2019 Physica A 528 121463
[17] Wang K F, Wang W D and Liu X N 2006 Comput. Math. Appl. 51 1593
[18] Chen M Y and You L 2015 Disc. Dyn. Nat. Soc. 2015 1
[19] Greenhalgh D, Liang Y and Mao X 2016 Physica A 462 684
[20] Xu W, Wang X Y and Liu X Z 2015 Chin. Phys. B 24 050204
[21] Gray A, Greenhalgh D, Mao X and Pan J F 2012 J. Math. Anal. Appl. 394 496
[22] Du N H, Kon R, Sato K and Takeuchi Y 2004 Comput. Appl. Math. 170 399
[23] Iannelli M, Milner F A and Pugliese A 1992 SIAM J. Math. Anal. 23 662
[24] Feng Z, Huang W and Castillo-Chavez C 2005 J. Differ. Eq. 218 292
[25] Neal P 2006 Adv. Appl. Probab. 38 943
[26] Neal P 2008 Adv. Appl. Probab. 45 513
[27] Li J, Ma Z and Zhou Y 2006 Acta Math. Sci. 26 83
[28] Van P, Driessche D and Watmough J 2000 J. Math. Biol. 40 525
[29] Andersson P and Lindenstrand D 2011 J. Math. Biol. 62 333
[30] Zhang X H and Jiang D Q 2016 Appl. Math. Lett. 59 87
[31] Anderson D R 1975 Ecology 56 1281
[32] Padilla D K and Adolph S C 1996 Evolutionary Ecol. 10 105
[33] Peccoud J and Ycart B 1995 Theor. Popul. Biol. 48 222
[34] Caswell R and Cohen J E 1995 Theor. Popul. Biol. 176 301
[35] Yang Q S and Mao X R 2013 Nonlinear Anal.: Real World Appl. 14 1434
[36] Liu M and Wang K 2011 J. Biol. Syst. 19 183
[1] Design of a polarization splitter for an ultra-broadband dual-core photonic crystal fiber
Yongtao Li(李永涛), Jiesong Deng(邓洁松), Zhen Yang(阳圳), Hui Zou(邹辉), and Yuzhou Ma(马玉周). Chin. Phys. B, 2022, 31(5): 054215.
[2] Exact explicit solitary wave and periodic wave solutions and their dynamical behaviors for the Schamel-Korteweg-de Vries equation
Bin He(何斌) and Qing Meng(蒙清). Chin. Phys. B, 2021, 30(6): 060201.
[3] Extinction mechanisms of hyperbolic h-BN nanodisk
Runkun Chen(陈闰堃), Jianing Chen(陈佳宁). Chin. Phys. B, 2020, 29(5): 057802.
[4] Design of diamond-shape photonic crystal fiber polarization filter based on surface plasma resonance effect
Yongxia Zhang(张永霞), Jinhui Yuan(苑金辉), Yuwei Qu(屈玉玮), Xian Zhou(周娴), Binbin Yan(颜玢玢), Qiang Wu(吴强), Kuiru Wang(王葵如), Xinzhu Sang(桑新柱), Keping Long(隆克平), Chongxiu Yu(余重秀). Chin. Phys. B, 2020, 29(3): 034208.
[5] Vertical profile of aerosol extinction based on the measurement of O4 of multi-elevation angles with MAX-DOAS
Fusheng Mou(牟福生), Jing Luo(雒静), Suwen Li(李素文), Wei Shan(单巍), Lisha Hu(胡丽莎). Chin. Phys. B, 2019, 28(8): 084212.
[6] Feasibility analysis for acquiring visibility based on lidar signal using genetic algorithm-optimized back propagation algorithm
Guo-Dong Sun(孙国栋), Lai-An Qin(秦来安), Zai-Hong Hou(侯再红), Xu Jing(靖旭), Feng He(何枫), Feng-Fu Tan(谭逢富), Si-Long Zhang(张巳龙), Shou-Chuan Zhang(张守川). Chin. Phys. B, 2019, 28(2): 024213.
[7] Dynamical behaviors of traveling wave solutions to a Fujimoto-Watanabe equation
Zhen-Shu Wen(温振庶), Li-Juan Shi(师利娟). Chin. Phys. B, 2018, 27(9): 090201.
[8] Stochastic responses of tumor—immune system with periodic treatment
Dong-Xi Li(李东喜), Ying Li(李颖). Chin. Phys. B, 2017, 26(9): 090203.
[9] Effects of thickness & shape on localized surface plasmon resonance of sexfoil nanoparticles
Yan Chen(陈艳), Xianchao Liu(刘贤超), Weidong Chen(陈卫东), Zhengwei Xie(谢征微), Yuerong Huang(黄跃容), Ling Li(李玲). Chin. Phys. B, 2017, 26(1): 017807.
[10] Theoretical simulation of a polarization splitter based on dual-core soft glass PCF with micron-scale gold wire
Qiang Liu(刘强), Shuguang Li(李曙光), Xinyu Wang(王新宇), Min Shi(石敏). Chin. Phys. B, 2016, 25(12): 124210.
[11] Effects of two types of noise and switching on the asymptotic dynamics of an epidemic model
Xu Wei (徐伟), Wang Xi-Ying (王喜英), Liu Xin-Zhi (刘新芝). Chin. Phys. B, 2015, 24(5): 050204.
[12] Optical study of Ba(MnxTi(1-x)O3) thin films by spectroscopic ellipsometry
Zhang Ting (张婷), Yin Jiang (殷江), Ding Ling-Hong (丁玲红), Zhang Wei-Feng (张伟风). Chin. Phys. B, 2013, 22(11): 117801.
[13] Controlling optical properties of periodic gold nanoparticle arrays by changing the substrate, topologic shapes of nanoparticles, and polarization direction of incident light
Li Ting(李婷), Yu Li(于丽), Lu Zhi-Xin(逯志欣), Song Gang(宋钢), and Zhang Kai(张恺) . Chin. Phys. B, 2011, 20(8): 087805.
[14] Attenuation characteristics of a light attenuator combined by polarizers with different extinction ratios
Huang Chong (黄翀), Deng Peng (邓鹏), Zhao Shuang (赵爽), Chen Hai-Qing (陈海清). Chin. Phys. B, 2011, 20(8): 084209.
[15] Simultaneous low extinction and high local field enhancement in Ag nanocubes
Zhou Fei(周飞), Liu Ye(刘晔), and Li Zhi-Yuan(李志远). Chin. Phys. B, 2011, 20(3): 037303.
No Suggested Reading articles found!