Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(9): 096104    DOI: 10.1088/1674-1056/26/9/096104
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Strain rate and cold rolling dependence of tensile strength and ductility in high nitrogen nickel-free austenitic stainless steel

Gui-Xun Sun(孙贵训)1, Yue Jiang(江月)1, Xiao-Ru Zhang(张晓茹)1, Shi-Cheng Sun(孙世成)2, Zhong-Hao Jiang(江忠浩)1, Wen-Quan Wang(王文权)1, Jian-She Lian(连建设)1
1 Key Laboratory of Automobile Materials, College of Materials Science and Engineering, Jilin University, Changchun 130025, China;
2 Key Laboratory of Advanced Structural Materials, Ministry of Education, College of Materials Science and Engineering, Changchun University of Technology, Changchun 1130012, China
Abstract  The tensile strength and ductility of a high nitrogen nickel-free austenitic stainless steel with solution and cold rolling treatment were investigated by performing tensile tests at different strain rates and at room temperature. The tensile tests demonstrated that this steel exhibits a significant strain rate and cold rolling dependence of the tensile strength and ductility. With the increase of the strain rate from 10-4 s-1 to 1 s-1, the yield strength and ultimate tensile strength increase and the uniform elongation and total elongation decrease. The analysis of the double logarithmic stress-strain curves showed that this steel exhibits a two-stage strain hardening behavior, which can be well examined and analyzed by using the Ludwigson equation. The strain hardening exponents at low and high strain regions (n2 and n1) and the transition strain (εL) decrease with increasing strain rate and the increase of cold rolling RA. Based on the analysis results of the stress-strain curves, the transmission electron microscopy characterization of the microstructure and the scanning electron microscopy observation of the deformation surfaces, the significant strain rate and cold rolling dependence of the strength and ductility of this steel were discussed and connected with the variation in the work hardening and dislocation activity with strain rate and cold rolling.
Keywords:  high nitrogen nickel-free austenitic stainless steel      cold rolling      Ludwigson equation      tensile strength and ductility  
Received:  22 May 2017      Revised:  07 July 2017      Accepted manuscript online: 
PACS:  61.82.Bg (Metals and alloys)  
  81.40.Ef (Cold working, work hardening; annealing, post-deformation annealing, quenching, tempering recovery, and crystallization)  
  81.70.-q (Methods of materials testing and analysis)  
  62.20.-x (Mechanical properties of solids)  
Fund: Project supported by the National Natural Science Foundations of China (Grant Nos. 51371089 and 51401083).
Corresponding Authors:  Zhong-Hao Jiang, Wen-Quan Wang     E-mail:  jzh@jlu.edu.cn;wwq@jlu.edu.cn

Cite this article: 

Gui-Xun Sun(孙贵训), Yue Jiang(江月), Xiao-Ru Zhang(张晓茹), Shi-Cheng Sun(孙世成), Zhong-Hao Jiang(江忠浩), Wen-Quan Wang(王文权), Jian-She Lian(连建设) Strain rate and cold rolling dependence of tensile strength and ductility in high nitrogen nickel-free austenitic stainless steel 2017 Chin. Phys. B 26 096104

[1] Simmons J W 1996 Mater. Sci. Eng. A 207 159
[2] Bayoumi F M and Ghanem W A 2005 Mater. Lett. 59 3311
[3] Fréchard S, Redjaimia A, Lach E and Lichtenberger A 2006 Mater. Sci. Eng. A 415 219
[4] Lee T H, Oh C S, Kim S J and Takaki S 2007 Acta Mater. 55 3649
[5] Lee T H, Oh C S and Kim S J 2008 Scri. Mater. 58 110
[6] Fu Y, Wu X Q, Han E H, Ke W, Yang K and Jiang Z H 2009 Electrochim. Acta 54 1618
[7] Dai Q X, Yuan Z Z, Chen X and Chen K M 2009 Mater. Sci. Eng. A 517 257
[8] Hong C M, Shi J, Sheng L Y, Cao W Q, Hui W J and Dong H 2011 J. Mater. Sci. 46 5097
[9] Shao C W, Shi F and Li X W 2015 Metall. Mater. Trans. A 46 1610
[10] Dong F Y, Zhang P, Pang J C, Duan Q Q, Ren Y B, Yang K and Zhang Z F 2016 Acta Metall. Sin. 29 140
[11] Shi F, Tian P C, Jia N, Ye Z H, Qi Y, Liu C M and Li X W 2016 Corros. Sci. 107 49
[12] Schino A D and Kenny J M 2003 Mater. Lett. 57 1830
[13] Park J H, Kanda M, Tsuchida N and Tomota Y 2005 J. Jpn. Inst. Metals 69 867
[14] Saller G, Spiradek-Hahn K, Scheu C and Clemens H 2006 Mater. Sci. Eng. A 427 246
[15] Wang S T, Yang K, Shan Y Y and Li L F 2008 Mater. Sci. Eng. A 490 95
[16] Onomoto T, Terazawa Y, Tsuchiyama T and Takaki S 2009 ISIJ Int. 49 1246
[17] Singh B B, Sivakumar K and Bhat T B 2009 Int. J. Impact. Eng. 36 611
[18] Zhu Y Z, Zhu Z, Yin Z M and Xiang Z D 2009 Mater. Sci. Tech. 25 989
[19] Wang W, Wang S T, Yang K and Shan Y Y 2009 Mater. Des. 30 1822
[20] Hong C M, Shi J, Sheng L Y, Cao W C, Hui W J and Dong H 2011 Mater. Des. 32 3711
[21] Hwang B, Lee T H, Park S J, Oh C S and Kim S J 2011 Mater. Sci. Eng. A 528 7257
[22] Erisir E, Prahl U and Bleck W 2013 Metall. Mater. Trans. A 44A 5549
[23] Dong F Y, Zhang P, Pang J C, Chen D M, Yang K and Zhang Z F 2013 Mater. Sci. Eng. A 587 185
[24] Shin J H and Lee J W 2014 Mater. Charact. 91 19
[25] Sun S C, Mu J W, Jiang Z H, Ji C T, Lian J S and Jiang Q 2014 Mater. Sci. Tech. 30 146
[26] Yamanaka K, Mori M and Chiba A 2014 J. Mech. Behav. Biomed. 29 417
[27] Abed F H, Ranganathan S I and Serry M A 2014 Mech. Mater. 77 142
[28] Mosecker L, Pierce D T, Schwedt A, Beighmohamadi M, Mayer J, Bleck W and Wittig J E 2015 Mater. Sci. Eng. A 642 71
[29] Mola J, Wendler M, Wei A, Reichel B, Wolf G and De Cooman B C 2015 Metall. Mater. Trans. A 46 1450
[30] Prasad Reddy G V, Sandhya R, Sankaran S and Laha K 2016 Trans. Indian Inst. Met. 69 303
[31] Park J Y, Park S J, Kang J Y, Lee C H, Ha H Y, Moon J, Jang J H and Lee T H 2017 Mater. Sci. Eng. A 682 622
[32] Yuan D Q, Zheng Y N, Zuo Y, Fan P, Zhou D M, Zhang Q L, Ma X Q, Cui B Q, Chen L H, Jiang W S, Wu Y C, Huang Q Y, Peng L, Cao X Z, Wang B Y, Wei L and Zhu S Y 2014 Chin. Phys. Lett. 31 046101
[33] Zhu L S and Zhao S J 2014 Chin. Phys. B 23 063601
[34] Liu Z G, Wang C Y and Yu T 2014 Chin. Phys. B 23 110208
[35] Zhang X W, Hua Z H, Jiang Y W and Yang S G 2015 Acta Phys. Sin. 64 098101 (in Chinese)
[36] Zhuo L C, Liang S H, Wang F, Liu Y F and Xiong J C 2015 Chin. Phys. Lett. 32 076102
[37] Mi G B, Huang X, Cao J X, Wang B and Cao C X 2016 Acta Phys. Sin. 65 056103 (in Chinese)
[38] Yan N, Hu L, Ruan Y, Wang W L and Wei B B 2016 Chin. Phys. Lett. 33 108103
[39] Hua J, Liu Y L, Li H S, Zhao M W and Liu X D 2016 Chin. Phys. B 25 036104
[40] Hollomon J H 1945 Trans. AIME 162 268
[41] Samuel K G and Rodriguez P 2005 J. Mater. Sci. 40 5727
[42] Palaparti D P R, Choudhary B K, Samuel E I, Srinivasan V S and Mathew M D 2012 Mater. Sci. Eng. A 538 110
[43] Ludwigson D C 1971 Metall. Trans. 2 2825
[44] Markandeya R, Nagarjuna S, Satyanarayana D V V and Sarma D S 2006 Mater. Sci. Eng. A 428 233
[45] Satyanarayana D V V, Malakondaiah G and Sarma D S 2007 Mater. Sci. Eng. A 452-453 244
[46] Simmons J W 1997 Acta mater 45 2467
[47] Mehta K K, Mukhopadhyay P, Mandal R K and Singh A K 2014 Mater. Sci. Eng. A 613 71
[48] Mehta K K, Mukhopadhyay P, Mandal R K and Singh A K 2014 Metall. Mater. Trans. A 45 3493
[49] Soussan A, Degallaix S and Magnin T 1991 Mater. Sci. Eng. A 142 169
[50] Milititsky M, Wispelaere N D, Petrov R, Ramos J E, Reguly A and Hänninen H 2008 Mater. Sci. Eng. A 498 289
[51] Sun S C, Sun G X, Jiang Z H, Ji C T, Liu J A and Lian J S 2014 Chin. Phys. B 23 026104
[52] Jeong K, Jin J E, Jung Y S, Kang S and Lee Y K 2013 Acta Mater. 61 3399
[53] Sivaprasad P V, Venugopal S and Venkadesan S 1997 Metall. Mater. Trans. A 28A 171
[54] Li H B, Jiang Z H, Zhang Z R, Xu B Y and Liu F B 2007 J. Iron Steel Res. Int. 14 330
[55] Ashby M F 1970 Philos. Mag. 21 399
[56] Jiang Z H, Lian J S and Baudelet B 1995 Acta Metall. Mater. 43 3349e
[57] Singh P N and Singh V 1996 Scri. Mater. 34 1861
[58] Sun G X, Zhang Y, Sun S C, Hu J J, Jiang Z H, Ji C T and Lian J S 2016 Mater. Sci. Eng. A 662 432
[59] Hu J J, Han S, Sun G X, Sun S C, Jiang Z H, Wang G Y and Lian J S 2014 Mater. Sci. Eng. A 618 621
[1] Atomic simulations of primary irradiation damage in U-Mo-Xe system
Wen-Hong Ouyang(欧阳文泓), Jian-Bo Liu(刘剑波), Wen-Sheng Lai(赖文生),Jia-Hao Li(李家好), and Bai-Xin Liu(柳百新). Chin. Phys. B, 2023, 32(3): 036101.
[2] Molecular dynamics study of interactions between edge dislocation and irradiation-induced defects in Fe–10Ni–20Cr alloy
Tao-Wen Xiong(熊涛文), Xiao-Ping Chen(陈小平), Ye-Ping Lin(林也平), Xin-Fu He(贺新福), Wen Yang(杨文), Wang-Yu Hu(胡望宇), Fei Gao(高飞), and Hui-Qiu Deng(邓辉球). Chin. Phys. B, 2023, 32(2): 020206.
[3] Microstructure and hardening effect of pure tungsten and ZrO2 strengthened tungsten under carbon ion irradiation at 700℃
Chun-Yang Luo(罗春阳), Bo Cui(崔博), Liu-Jie Xu(徐流杰), Le Zong(宗乐), Chuan Xu(徐川), En-Gang Fu(付恩刚), Xiao-Song Zhou(周晓松), Xing-Gui Long(龙兴贵), Shu-Ming Peng(彭述明), Shi-Zhong Wei(魏世忠), and Hua-Hai Shen(申华海). Chin. Phys. B, 2022, 31(9): 096102.
[4] Cluster dynamics modeling of niobium and titanium carbide precipitates in α-Fe and γ-Fe
Nadezda Korepanova, Long Gu(顾龙), Mihai Dima, and Hushan Xu(徐瑚珊). Chin. Phys. B, 2022, 31(2): 026103.
[5] Mechanism of microweld formation and breakage during Cu-Cu wire bonding investigated by molecular dynamics simulation
Beikang Gu(顾倍康), Shengnan Shen(申胜男), and Hui Li(李辉). Chin. Phys. B, 2022, 31(1): 016101.
[6] Spin and spin-orbit coupling effects in nickel-based superalloys: A first-principles study on Ni3Al doped with Ta/W/Re
Liping Liu(刘立平), Jin Cao(曹晋), Wei Guo(郭伟), and Chongyu Wang(王崇愚). Chin. Phys. B, 2022, 31(1): 016105.
[7] Molecular dynamics simulations of dopant effectson lattice trapping of cracks in Ni matrix
Shulan Liu(刘淑兰) and Huijing Yang(杨会静). Chin. Phys. B, 2021, 30(11): 116107.
[8] In-situ TEM observation of the evolution of helium bubbles in Mo during He+ irradiation and post-irradiation annealing
Yi-Peng Li(李奕鹏), Guang Ran(冉广), Xin-Yi Liu(刘歆翌), Xi Qiu(邱玺), Qing Han(韩晴), Wen-Jie Li(李文杰), and Yi-Jia Guo(郭熠佳). Chin. Phys. B, 2021, 30(8): 086109.
[9] A rational design of bimetallic PdAu nanoflowers as efficient catalysts for methanol oxidation reaction
Jinyang Liu(刘锦阳), Min Wu(武敏), Xinyi Yang(杨新一), Juan Ding(丁娟), Weiwei Lei(类伟巍), and Yongming Sui(隋永明). Chin. Phys. B, 2021, 30(5): 056102.
[10] Corrosion behavior of high-level waste container materials Ti and Ti-Pd alloy under long-term gamma irradiation in Beishan groundwater
Qianglin Wei(魏强林), Yuhong Li(李玉红), Yanliang Huang(黄彦良), Dongyan Yang(杨冬燕), Bo Yang(杨波), and Yibao Liu(刘义保). Chin. Phys. B, 2021, 30(5): 056109.
[11] Process modeling gas atomization of close-coupled ring-hole nozzle for 316L stainless steel powder production
Peng Wang(汪鹏), Jing Li(李静), Hen-San Liu(刘恒三), Xin Wang(王欣), Bo-Rui Du(杜博睿), Ping Gan(甘萍), Shi-Yuan Shen(申世远), Bin Fan(范斌), Xue-Yuan Ge(葛学元), and Miao-Hui Wang(王淼辉). Chin. Phys. B, 2021, 30(5): 057502.
[12] Close-coupled nozzle atomization integral simulation and powder preparation using vacuum induction gas atomization technology
Peng Wang(汪鹏), Jing Li(李静), Xin Wang(王欣), Heng-San Liu(刘恒三), Bin Fan(范斌), Ping Gan(甘萍), Rui-Feng Guo(郭瑞峰), Xue-Yuan Ge(葛学元), and Miao-Hui Wang(王淼辉). Chin. Phys. B, 2021, 30(2): 027502.
[13] Anti-oxidation characteristics of Cr-coating on surface of Ti-45Al-8.5Nb alloy by plasma surface metallurgy technique
Bing Zhou(周兵), Ya-Rong Wang(王亚榕), Ke Zheng(郑可), Yong Ma(马永), Yong-Sheng Wang(王永胜), Sheng-Wang Yu(于盛旺), and Yu-Cheng Wu(吴玉程). Chin. Phys. B, 2020, 29(12): 126101.
[14] Size effect of He clusters on the interactions with self-interstitial tungsten atoms at different temperatures
Jinlong Wang(王金龙), Wenqiang Dang(党文强), Daping Liu(刘大平), Zhichao Guo(郭志超). Chin. Phys. B, 2020, 29(9): 093101.
[15] Effects of Re, Ta, and W in [110] (001) dislocation core of γ/γ' interface to Ni-based superalloys: First-principles study
Chuanxi Zhu(朱传喜), Tao Yu(于涛). Chin. Phys. B, 2020, 29(9): 096101.
No Suggested Reading articles found!