CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES |
Prev
Next
|
|
|
Strain rate and cold rolling dependence of tensile strength and ductility in high nitrogen nickel-free austenitic stainless steel |
Gui-Xun Sun(孙贵训)1, Yue Jiang(江月)1, Xiao-Ru Zhang(张晓茹)1, Shi-Cheng Sun(孙世成)2, Zhong-Hao Jiang(江忠浩)1, Wen-Quan Wang(王文权)1, Jian-She Lian(连建设)1 |
1 Key Laboratory of Automobile Materials, College of Materials Science and Engineering, Jilin University, Changchun 130025, China; 2 Key Laboratory of Advanced Structural Materials, Ministry of Education, College of Materials Science and Engineering, Changchun University of Technology, Changchun 1130012, China |
|
|
Abstract The tensile strength and ductility of a high nitrogen nickel-free austenitic stainless steel with solution and cold rolling treatment were investigated by performing tensile tests at different strain rates and at room temperature. The tensile tests demonstrated that this steel exhibits a significant strain rate and cold rolling dependence of the tensile strength and ductility. With the increase of the strain rate from 10-4 s-1 to 1 s-1, the yield strength and ultimate tensile strength increase and the uniform elongation and total elongation decrease. The analysis of the double logarithmic stress-strain curves showed that this steel exhibits a two-stage strain hardening behavior, which can be well examined and analyzed by using the Ludwigson equation. The strain hardening exponents at low and high strain regions (n2 and n1) and the transition strain (εL) decrease with increasing strain rate and the increase of cold rolling RA. Based on the analysis results of the stress-strain curves, the transmission electron microscopy characterization of the microstructure and the scanning electron microscopy observation of the deformation surfaces, the significant strain rate and cold rolling dependence of the strength and ductility of this steel were discussed and connected with the variation in the work hardening and dislocation activity with strain rate and cold rolling.
|
Received: 22 May 2017
Revised: 07 July 2017
Accepted manuscript online:
|
PACS:
|
61.82.Bg
|
(Metals and alloys)
|
|
81.40.Ef
|
(Cold working, work hardening; annealing, post-deformation annealing, quenching, tempering recovery, and crystallization)
|
|
81.70.-q
|
(Methods of materials testing and analysis)
|
|
62.20.-x
|
(Mechanical properties of solids)
|
|
Fund: Project supported by the National Natural Science Foundations of China (Grant Nos. 51371089 and 51401083). |
Corresponding Authors:
Zhong-Hao Jiang, Wen-Quan Wang
E-mail: jzh@jlu.edu.cn;wwq@jlu.edu.cn
|
Cite this article:
Gui-Xun Sun(孙贵训), Yue Jiang(江月), Xiao-Ru Zhang(张晓茹), Shi-Cheng Sun(孙世成), Zhong-Hao Jiang(江忠浩), Wen-Quan Wang(王文权), Jian-She Lian(连建设) Strain rate and cold rolling dependence of tensile strength and ductility in high nitrogen nickel-free austenitic stainless steel 2017 Chin. Phys. B 26 096104
|
[1] |
Simmons J W 1996 Mater. Sci. Eng. A 207 159
|
[2] |
Bayoumi F M and Ghanem W A 2005 Mater. Lett. 59 3311
|
[3] |
Fréchard S, Redjaimia A, Lach E and Lichtenberger A 2006 Mater. Sci. Eng. A 415 219
|
[4] |
Lee T H, Oh C S, Kim S J and Takaki S 2007 Acta Mater. 55 3649
|
[5] |
Lee T H, Oh C S and Kim S J 2008 Scri. Mater. 58 110
|
[6] |
Fu Y, Wu X Q, Han E H, Ke W, Yang K and Jiang Z H 2009 Electrochim. Acta 54 1618
|
[7] |
Dai Q X, Yuan Z Z, Chen X and Chen K M 2009 Mater. Sci. Eng. A 517 257
|
[8] |
Hong C M, Shi J, Sheng L Y, Cao W Q, Hui W J and Dong H 2011 J. Mater. Sci. 46 5097
|
[9] |
Shao C W, Shi F and Li X W 2015 Metall. Mater. Trans. A 46 1610
|
[10] |
Dong F Y, Zhang P, Pang J C, Duan Q Q, Ren Y B, Yang K and Zhang Z F 2016 Acta Metall. Sin. 29 140
|
[11] |
Shi F, Tian P C, Jia N, Ye Z H, Qi Y, Liu C M and Li X W 2016 Corros. Sci. 107 49
|
[12] |
Schino A D and Kenny J M 2003 Mater. Lett. 57 1830
|
[13] |
Park J H, Kanda M, Tsuchida N and Tomota Y 2005 J. Jpn. Inst. Metals 69 867
|
[14] |
Saller G, Spiradek-Hahn K, Scheu C and Clemens H 2006 Mater. Sci. Eng. A 427 246
|
[15] |
Wang S T, Yang K, Shan Y Y and Li L F 2008 Mater. Sci. Eng. A 490 95
|
[16] |
Onomoto T, Terazawa Y, Tsuchiyama T and Takaki S 2009 ISIJ Int. 49 1246
|
[17] |
Singh B B, Sivakumar K and Bhat T B 2009 Int. J. Impact. Eng. 36 611
|
[18] |
Zhu Y Z, Zhu Z, Yin Z M and Xiang Z D 2009 Mater. Sci. Tech. 25 989
|
[19] |
Wang W, Wang S T, Yang K and Shan Y Y 2009 Mater. Des. 30 1822
|
[20] |
Hong C M, Shi J, Sheng L Y, Cao W C, Hui W J and Dong H 2011 Mater. Des. 32 3711
|
[21] |
Hwang B, Lee T H, Park S J, Oh C S and Kim S J 2011 Mater. Sci. Eng. A 528 7257
|
[22] |
Erisir E, Prahl U and Bleck W 2013 Metall. Mater. Trans. A 44A 5549
|
[23] |
Dong F Y, Zhang P, Pang J C, Chen D M, Yang K and Zhang Z F 2013 Mater. Sci. Eng. A 587 185
|
[24] |
Shin J H and Lee J W 2014 Mater. Charact. 91 19
|
[25] |
Sun S C, Mu J W, Jiang Z H, Ji C T, Lian J S and Jiang Q 2014 Mater. Sci. Tech. 30 146
|
[26] |
Yamanaka K, Mori M and Chiba A 2014 J. Mech. Behav. Biomed. 29 417
|
[27] |
Abed F H, Ranganathan S I and Serry M A 2014 Mech. Mater. 77 142
|
[28] |
Mosecker L, Pierce D T, Schwedt A, Beighmohamadi M, Mayer J, Bleck W and Wittig J E 2015 Mater. Sci. Eng. A 642 71
|
[29] |
Mola J, Wendler M, Wei A, Reichel B, Wolf G and De Cooman B C 2015 Metall. Mater. Trans. A 46 1450
|
[30] |
Prasad Reddy G V, Sandhya R, Sankaran S and Laha K 2016 Trans. Indian Inst. Met. 69 303
|
[31] |
Park J Y, Park S J, Kang J Y, Lee C H, Ha H Y, Moon J, Jang J H and Lee T H 2017 Mater. Sci. Eng. A 682 622
|
[32] |
Yuan D Q, Zheng Y N, Zuo Y, Fan P, Zhou D M, Zhang Q L, Ma X Q, Cui B Q, Chen L H, Jiang W S, Wu Y C, Huang Q Y, Peng L, Cao X Z, Wang B Y, Wei L and Zhu S Y 2014 Chin. Phys. Lett. 31 046101
|
[33] |
Zhu L S and Zhao S J 2014 Chin. Phys. B 23 063601
|
[34] |
Liu Z G, Wang C Y and Yu T 2014 Chin. Phys. B 23 110208
|
[35] |
Zhang X W, Hua Z H, Jiang Y W and Yang S G 2015 Acta Phys. Sin. 64 098101 (in Chinese)
|
[36] |
Zhuo L C, Liang S H, Wang F, Liu Y F and Xiong J C 2015 Chin. Phys. Lett. 32 076102
|
[37] |
Mi G B, Huang X, Cao J X, Wang B and Cao C X 2016 Acta Phys. Sin. 65 056103 (in Chinese)
|
[38] |
Yan N, Hu L, Ruan Y, Wang W L and Wei B B 2016 Chin. Phys. Lett. 33 108103
|
[39] |
Hua J, Liu Y L, Li H S, Zhao M W and Liu X D 2016 Chin. Phys. B 25 036104
|
[40] |
Hollomon J H 1945 Trans. AIME 162 268
|
[41] |
Samuel K G and Rodriguez P 2005 J. Mater. Sci. 40 5727
|
[42] |
Palaparti D P R, Choudhary B K, Samuel E I, Srinivasan V S and Mathew M D 2012 Mater. Sci. Eng. A 538 110
|
[43] |
Ludwigson D C 1971 Metall. Trans. 2 2825
|
[44] |
Markandeya R, Nagarjuna S, Satyanarayana D V V and Sarma D S 2006 Mater. Sci. Eng. A 428 233
|
[45] |
Satyanarayana D V V, Malakondaiah G and Sarma D S 2007 Mater. Sci. Eng. A 452-453 244
|
[46] |
Simmons J W 1997 Acta mater 45 2467
|
[47] |
Mehta K K, Mukhopadhyay P, Mandal R K and Singh A K 2014 Mater. Sci. Eng. A 613 71
|
[48] |
Mehta K K, Mukhopadhyay P, Mandal R K and Singh A K 2014 Metall. Mater. Trans. A 45 3493
|
[49] |
Soussan A, Degallaix S and Magnin T 1991 Mater. Sci. Eng. A 142 169
|
[50] |
Milititsky M, Wispelaere N D, Petrov R, Ramos J E, Reguly A and Hänninen H 2008 Mater. Sci. Eng. A 498 289
|
[51] |
Sun S C, Sun G X, Jiang Z H, Ji C T, Liu J A and Lian J S 2014 Chin. Phys. B 23 026104
|
[52] |
Jeong K, Jin J E, Jung Y S, Kang S and Lee Y K 2013 Acta Mater. 61 3399
|
[53] |
Sivaprasad P V, Venugopal S and Venkadesan S 1997 Metall. Mater. Trans. A 28A 171
|
[54] |
Li H B, Jiang Z H, Zhang Z R, Xu B Y and Liu F B 2007 J. Iron Steel Res. Int. 14 330
|
[55] |
Ashby M F 1970 Philos. Mag. 21 399
|
[56] |
Jiang Z H, Lian J S and Baudelet B 1995 Acta Metall. Mater. 43 3349e
|
[57] |
Singh P N and Singh V 1996 Scri. Mater. 34 1861
|
[58] |
Sun G X, Zhang Y, Sun S C, Hu J J, Jiang Z H, Ji C T and Lian J S 2016 Mater. Sci. Eng. A 662 432
|
[59] |
Hu J J, Han S, Sun G X, Sun S C, Jiang Z H, Wang G Y and Lian J S 2014 Mater. Sci. Eng. A 618 621
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|