CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Improvement of the high-κ/Ge interface thermal stability using an in-situ ozone treatment characterized by conductive atomic force microscopy |
Ji-Bin Fan(樊继斌)1, Xiao-Jiao Cheng(程晓姣)1, Hong-Xia Liu(刘红侠)2, Shu-Long Wang(王树龙)2, Li Duan(段理)1 |
1 School of Materials Science and Engineering, Chang'an University, Xi'an 710061, China;
2 School of Microelectronics, Key Laboratory of Wide Band-Gap Semiconductor Materials and Devices, Xidian University, Xi'an 710071, China |
|
|
Abstract In this work, an in-situ ozone treatment is carried out to improve the interface thermal stability of HfO2/Al2O3 gate stack on germanium (Ge) substrate. The micrometer scale level of HfO2/Al2O3 gate stack on Ge is studied using conductive atomic force microscopy (AFM) with a conductive tip. The initial results indicate that comparing with a non in-situ ozone treated sample, the interface thermal stability of the sample with an in-situ ozone treatment can be substantially improved after annealing. As a result, void-free surface, low conductive spots, low leakage current density, and relative high breakdown voltage high-κ/Ge are obtained. A detailed analysis is performed to confirm the origins of the changes. All results indicate that in-situ ozone treatment is a promising method to improve the interface properties of Ge-based three-dimensional (3D) devices in future technology nodes.
|
Received: 06 March 2017
Revised: 14 April 2017
Accepted manuscript online:
|
PACS:
|
77.55.D-
|
|
|
82.80.Pv
|
(Electron spectroscopy (X-ray photoelectron (XPS), Auger electron spectroscopy (AES), etc.))
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61604016), China Postdoctoral Science Foundation (Grant No. 2017M613028), and the Fundamental Research Funds for the Central Universities, China (Grant Nos. 310831161003 and CHD2017ZD142). |
Corresponding Authors:
Ji-Bin Fan
E-mail: jan@chd.edu.cn
|
About author: 0.1088/1674-1056/26/8/ |
Cite this article:
Ji-Bin Fan(樊继斌), Xiao-Jiao Cheng(程晓姣), Hong-Xia Liu(刘红侠), Shu-Long Wang(王树龙), Li Duan(段理) Improvement of the high-κ/Ge interface thermal stability using an in-situ ozone treatment characterized by conductive atomic force microscopy 2017 Chin. Phys. B 26 087701
|
[1] |
Zhang R, Tang X, Yu X and Li J 2016 IEEE Electron Dev. Lett. 37 831
|
[2] |
Asahara R, Hideshima I, Oka H, Minoura Y, Ogawa S, Yoshigoe A, Teraoka Y, Hosoi T, Shimura T and Watanabe H 2015 Appl. Phys. Lett. 106 233503
|
[3] |
Tan T T, Liu Z T and Li Y Y 2011 Chin. Phys. Lett. 28 086803
|
[4] |
Shin Y, Chung W, Seo Y, Lee C H, Sohn D K and Cho B J 2014 VLSI Symp. Tech. Dig. pp. 1-2
|
[5] |
Takagi S, Noguchi M, Kim M, Kim S H, Chang C Y, Yokoyama M, Nishi K, Zhang R, Ke M and Takenaka M 2016 Solid-State Electron. 125 82
|
[6] |
Kita K, Suzuki S, Nomura H, Takahashi T, Nishimura T and Toriumi A 2008 Jpn. J. Appl. Phys. 47 2349
|
[7] |
Golias E, Tsetseris L, Dimoulas A and Pantelides S T 2011 Microelectron. Eng. 88 427
|
[8] |
Xie Q, Deduytsche D, Schaekers M, Caymax M, Delabie A, Qu X P and Detavernier C 2011 Electochem. Solid-State Lett. 14 G20
|
[9] |
Fan J B, Ding X F, Liu H X, Xie P F, Zhang Y T and Liao Q L 2016 Chin. Phys. B 25 027702
|
[10] |
Ke M, Yu X, Chang C, Takenaka M and Takagi S 2016 Appl. Phys. Lett. 109 032101
|
[11] |
Zhang R, Huang P C, Lin J C, Taoka N, Takenaka M and Takagi S 2013 IEEE Trans. Electron Dev. 60 927
|
[12] |
Ando T, Hashemi P, Bruley J, Rozen J, Ogawa Y, Koswatta S, Chan K, Cartier E A, Mo R and Narayananet V 2017 IEEE Electron Dev. Lett. 38 303
|
[13] |
Yang X, Wang S K, Zhang X, Sun B, Zhao W, Chang H D, Zeng Z H and Liu H G 2014 Appl. Phys. Lett. 105 092101
|
[14] |
Bayerl A, Lanza M, Aguilera L, Porti M, Nafría M, Aymerich X and Gendt S 2013 Microelectron. Reliab. 53 867
|
[15] |
Adachi M, Kato Y, Kato K, Sakashita M, Kondo H and Takeuchi W, Nakatsuka O and Zaima S 2011 Jpn. J. Appl. Phys. 50 584
|
[16] |
Wang S K, Kita K, Lee C H, Tabata T, Nishimura T, Nagashio K and Toriumi A 2010 J. Appl. Phys. 108 054104
|
[17] |
Wang S K, Kita K, Nishimura T, Nagashio K and Toriumi A 2011 Jpn. J. Appl. Phys. 50 10PE04
|
[18] |
Chang H S, Baek S K, Park H, Hwang H, Oh J H, Shin W S, Yeo J H, Hwang K H, Nam S W, Lee H D, Song C L, Moonand D W and Cho M H 2004 Electochem. Solid-State Lett. 7 F42
|
[19] |
Fei C, Liu H, Wang X, Zhao L, Zhao D and Feng X 2017 Nanoscale Res. Lett. 12 218
|
[20] |
Couso C, Iglesias V, Porti M and Claramunt S 2016 IEEE Electron Dev. Lett. 37 640
|
[21] |
Rao P K, Park B, Lee S T, Noh Y K, Kim M D and Oh J 2011 J. Appl. Phys. 110 025015
|
[22] |
Van Elshocht S, Caymax M, Conard T, De Gendt S, Hoflijk I, Houssa M, De Jaeger B, Van Sttebergen J, Heyns M and Merius M 2006 Appl. Phys. Lett. 88 141904
|
[23] |
Wang S K, Kita K, Nishimura T, Nagashio K and Toriumi A 2011 Jpn. J. Appl. Phys. 50 04DA01
|
[24] |
Houssa M, Pourtois G, Caymax M, Meuris M and Heyns M M 2008 Appl. Phys. Lett. 92 242101
|
[25] |
Shibayama S, Kato K, Sakashita M, Takeuchi W, Nakatsuka O and Zaima S 2012 Thin Solid Films 520 3397
|
[26] |
Bellenger F, Merckling C, Penaud J, Houssa M, Caymax M, Meuris M, De Meyer K and Heyns M M 2008 ECS Trans. 16 411
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|