Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(7): 074206    DOI: 10.1088/1674-1056/26/7/074206
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Quantum interference between heralded single photon stateand coherent state

Lei Yang(杨磊)1, Xiaoxin Ma(马晓欣)2, Xiaoying Li(李小英)1
1 College of Precision Instrument and Opto-Electronics Engineering, Tianjin University, Key Laboratory of Opto-Electronics Information Technology, Ministry of Education, Tianjin 300072, China;
2 High School Affiliated to Beijing Institute of Technology, Beijing 100089, China
Abstract  Balanced homodyne detection has been introduced as a reliable technique of reconstructing the quantum state of a single photon Fock state, which is based on coupling the single photon state and a strong coherent local oscillator in a beam splitter and detecting the field quadrature at the output ports separately. The main challenge associated with a tomographic characterization of the single photon state is mode matching between the single photon state and the local oscillator. Utilizing the heralded single photon generated by the spontaneous parametric process, the multi-mode theoretical model of quantum interference between the single photon state and the coherent state in the fiber beam splitter is established. Moreover, the analytical expressions of the temporal-mode matching coefficient and interference visibility and relationship between the two parameters are shown. In the experimental scheme, the interference visibility under various temporal-mode matching coefficients is demonstrated, which is almost accordant with the theoretical value. Our work explores the principle of temporal-mode matching between the single photon state and the coherent photon state, originated from a local oscillator, and could provide guidance for designing the high-performance balanced homodyne detection system.
Keywords:  heralded single photon state      coherent state      quantum interference      balanced homodyne detection  
Received:  18 February 2017      Revised:  19 March 2017      Accepted manuscript online: 
PACS:  42.50.-p (Quantum optics)  
  03.67.-a (Quantum information)  
  42.65.-k (Nonlinear optics)  
  42.81.-i (Fiber optics)  
Fund: Project supported by the National Special Fund for Major Research Instrument Development of China (Grant No.11527808),the Young Scientists Fund of the National Natural Science Foundation of China (Grant No.11504262),the National Basic Research Program of China (Grant No.2014CB340103),the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No.20120032110055),and the Tianjin Research Program of Application Foundation and Advanced Technology,China (Grant No.14JCQNJC02300).
Corresponding Authors:  Xiaoying Li     E-mail:  xiaoyingli@tju.edu.cn

Cite this article: 

Lei Yang(杨磊), Xiaoxin Ma(马晓欣), Xiaoying Li(李小英) Quantum interference between heralded single photon stateand coherent state 2017 Chin. Phys. B 26 074206

[1] Stucki D, Gisin N, Guinnard O, Ribordy G and Zbinden H 2002 New J. Phys. 4 41
[2] Mi J L, Wang F Q, Lin Q Q and Liang R S 2008 Chin. Phys. B 17 1178
[3] Chen J J, Han Z F, Zhao Y B, Gui Y Z and Guo G C 2006 Physics 35 785
[4] Knill E, Laflamme R and Milburn G J 2001 Nature 409 46
[5] Bouwmeester D, Pan J W, Mattle K, Eibl M, Weinfurter H and Zeilinger A 1997 Nature 390 575
[6] Hong C K and Mandel L 1986 Phys. Rev. Lett. 56 58
[7] Lounis B and Orrit M 2005 Rep. Prog. Phys. 68 1129
[8] Pittman T B, Jacobs B C and Franson J D 2005 Opt. Commun. 246 545
[9] Yang L, Ma X X, Guo X S, Cui L and Li X Y 2011 Phys. Rev. A 83 053843
[10] Lvovsky A I, Hansen H, Aichele T, Benson O, Mlynek J and Schiller S 2001 Phys. Rev. Lett. 87 050402
[11] Burch E T, Henelsmith C, Larson W and Beck M 2015 Phys. Rev. A 92 032328
[12] Bimbard E, Boddeda R, Vitrant N, Grankin A, Parigi V, Stanojevic J, Ourjoumtsev A and Grangier P 2014 Phys. Rev. Lett. 112 033601
[13] Wang J C, Liu S T and Wang Y Y 2010 Chin. Phys. B 19 074206
[14] Shapiro J H 1985 IEEE J. Quantum Elect. QE-21 237
[15] Zavatta A, Bellini M, Ramazza P L, Marin F and Arecchi F T 2002 J. Opt. Soc. Am. B 19 1189
[16] Leonhardt U 1995 Phys. Rev. Lett. 74 4101
[17] Lvovsky A I and Raymer M G 2009 Rev. Mod. Phys. 81 299
[18] Banaszek K and Wodkiewicz K 1997 Phys. Rev. A 55 3117
[19] Ma X X, Cui L and Li X Y 2015 J. Opt. Soc. Am. B 32 946
[20] Hong C K, Ou Z Y and Mandel L 1987 Phys. Rev. Lett. 59 2044
[21] Ma X X, Li X Y, Cui L, Guo X S and Yang L 2011 Phys. Rev. A 84 023829
[22] Caves C M 1982 Phys. Rev. D 26 1817
[23] Glauber R J 1963 Phys. Rev. 130 2529
[24] Ou Z Y, Rhee J K and Wang L J 1999 Phys. Rev. A 60 593
[25] Yang L, Li X Y and Wang B S 2008 Acta Phys. Sin. 57 4933 (in Chinese)
[26] Jian Y, Wu E, Wu G and Zeng H P 2010 IEEE Photon. Tech. Lett. 22 173
[27] Natarajan C M, Tanner and Hadfield R H 2012 Supercond. Sci. Tech. 25 63001
[1] Nonclassicality of photon-modulated spin coherent states in the Holstein—Primakoff realization
Xiaoyan Zhang(张晓燕), Jisuo Wang(王继锁), Lei Wang(王磊),Xiangguo Meng(孟祥国), and Baolong Liang(梁宝龙). Chin. Phys. B, 2022, 31(5): 054205.
[2] Coherent interaction and action-counteraction theory in small polaron systems, and ground state properties
Zhi-Hua Luo(罗质华) and Chao-Fan Yu(余超凡). Chin. Phys. B, 2022, 31(11): 117104.
[3] Multiplexing technology based on SQUID for readout of superconducting transition-edge sensor arrays
Xinyu Wu(吴歆宇), Qing Yu(余晴), Yongcheng He(何永成), Jianshe Liu(刘建设), and Wei Chen(陈炜). Chin. Phys. B, 2022, 31(10): 108501.
[4] Chirp-dependent ionization of hydrogen atoms in the presence of super-intense laser pulses
Fengzheng Zhu(朱风筝), Xiaoyu Liu(刘晓煜), Yue Guo(郭月), Ningyue Wang(王宁月), Liguang Jiao(焦利光), and Aihua Liu(刘爱华). Chin. Phys. B, 2021, 30(9): 094209.
[5] Wave packet dynamics of nonlinear Gazeau-Klauder coherent states of a position-dependent mass system in a Coulomb-like potential
Faustin Blaise Migueu, Mercel Vubangsi, Martin Tchoffo, and Lukong Cornelius Fai. Chin. Phys. B, 2021, 30(6): 060309.
[6] Stable quantum interference enabled by coexisting detuned and resonant STIRAPs
Dan Liu(刘丹), Yichun Gao(高益淳), Jianqin Xu(许建琴), and Jing Qian(钱静). Chin. Phys. B, 2021, 30(5): 053701.
[7] Absorption interferometer of two-sided cavity
Miao-Di Guo(郭苗迪) and Hong-Mei Li(李红梅). Chin. Phys. B, 2021, 30(5): 054202.
[8] Probe of topological invariants using quantum walks of a trapped ion in coherent state space
Ya Meng(蒙雅), Feng Mei(梅锋), Gang Chen(陈刚), Suo-Tang Jia(贾锁堂). Chin. Phys. B, 2020, 29(7): 070501.
[9] Unconventional photon blockade in a three-mode system with double second-order nonlinear coupling
Hong-Yu Lin(林宏宇), Hui Yang(杨慧), and Zhi-Hai Yao(姚治海). Chin. Phys. B, 2020, 29(12): 120304.
[10] Nonclassicality of photon-modulated atomic coherent states in the Schwinger bosonic realization
Jisuo Wang(王继锁), Xiangguo Meng(孟祥国), and Xiaoyan Zhang(张晓燕). Chin. Phys. B, 2020, 29(12): 124213.
[11] Finite-dimensional pair coherent state engendered via the nonlinear Bose operator realization and its Wigner phase-space distributions
Jianming Liu(刘建明), Xiangguo Meng(孟祥国). Chin. Phys. B, 2019, 28(12): 124206.
[12] Time evolution of angular momentum coherent state derived by virtue of entangled state representation and a new binomial theorem
Ji-Suo Wang(王继锁), Xiang-Guo Meng(孟祥国), Hong-Yi Fan(范洪义). Chin. Phys. B, 2019, 28(10): 100301.
[13] Entropy of field interacting with two two-qubit atoms
Tang-Kun Liu(刘堂昆), Yu Tao(陶宇), Chuan-Jia Shan(单传家), Ji-Bing Liu(刘继兵). Chin. Phys. B, 2018, 27(9): 090303.
[14] Construction of two-qubit logical gates by transmon qubits in a three-dimensional cavity
Han Cai(蔡涵), Qi-Chun Liu(刘其春), Chang-Hao Zhao(赵昌昊), Ying-Shan Zhang(张颖珊), Jian-She Liu(刘建设), Wei Chen(陈炜). Chin. Phys. B, 2018, 27(8): 084207.
[15] Optimization of pick-up coils for weakly damped SQUID gradiometers
Kang Yang(杨康), Jialei Wang(王佳磊), Xiangyan Kong(孔祥燕), Ruihu Yang(杨瑞虎), Hua Chen(陈桦). Chin. Phys. B, 2018, 27(5): 050701.
No Suggested Reading articles found!