Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(12): 120304    DOI: 10.1088/1674-1056/abab82
GENERAL Prev   Next  

Unconventional photon blockade in a three-mode system with double second-order nonlinear coupling

Hong-Yu Lin(林宏宇)1,2, Hui Yang(杨慧)1, and Zhi-Hai Yao(姚治海)1,
1 Department of Physics, Changchun University of Science and Technology, Changchun 130022, China; 2 College of Physics and Electronic Information, Baicheng Normal University, Baicheng 137000, China
Abstract  The unconventional photon blockade (UPB) for low-frequency mode is investigated in a three-mode system with double second-order nonlinearity. By analyzing the Hamiltonian of the system, the optimal analytic condition of UPB in low-frequency mode is obtained. The numerical results are calculated by solving the master equation in a truncated Fock space, which agrees well with the analytic conditions. Through the numerical analysis of the system, it is found that the weak driving strength is favorable for the system to realize the UPB effect, and the system is insensitive to the changes of attenuation rate and environmental temperature. The comparison with the two-mode system and another similar three-mode system shows that, under similar system parameters, the UPB effect of this double two-order nonlinear system is more obvious.
Keywords:  unconventional photon blockade      second-order nonlinearity      quantum interference  
Received:  14 June 2020      Revised:  16 July 2020      Accepted manuscript online:  01 August 2020
PACS:  03.67.Hk (Quantum communication)  
  14.70.Bh (Photons)  
  42.50.-p (Quantum optics)  
  42.60.-v (Laser optical systems: design and operation)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11647054) and the Natural Science Foundation of Jilin Province, China (Grant No. JJKH20181088KJ).
Corresponding Authors:  Corresponding author. E-mail:   

Cite this article: 

Hong-Yu Lin(林宏宇), Hui Yang(杨慧), and Zhi-Hai Yao(姚治海) Unconventional photon blockade in a three-mode system with double second-order nonlinear coupling 2020 Chin. Phys. B 29 120304

[1] Scarani V, Bechmann P H and Peev M Rev. Mod. Phys. 81 1301 DOI: 10.1103/RevModPhys.81.13012009
[2] Giovannetti V, Lloyd S and Maccone L Nat. Photon. 5 222 DOI: 10.1038/nphoton.2011.352011
[3] Knill E, Lafiamme R and Milburn G J Nature 409 46 DOI: 10.1038/350510092001
[4] Shields A J Nat. Photon. 1 215 DOI: 10.1038/nphoton.2007.462007
[5] Davidovich L Rev. Mod. Phys. 68 127 DOI: 10.1103/RevModPhys.68.1271996
[6] Buluta I, Ashhab S and Nori F Rep. Prog. Phys. 74 104401 DOI: 10.1088/0034-4885/74/10/1044012011
[7] Lang C, Bozyigit D and Eichler C Phys. Rev. Lett. 106 243601 DOI: 10.1103/PhysRevLett.106.2436012011
[8] Hofiman A J, Srinivasan S J, Schmidt S, Spietz L, Aumentado J and Houck A A Phys. Rev. Lett. 107 053602 DOI: 10.1103/PhysRevLett.107.0536022011
[9] Ferretti S, Andreani L C and Gerace D Phys. Rev. A 82 013841 DOI: 10.1103/PhysRevA.82.0138412010
[10] Liao J Q and Law C K Phys. Rev. A 82 053836 DOI: 10.1103/PhysRevA.82.0538362010
[11] Miranowicz A, Paprzycka M, Liu Y X, Bajer J and Nori F Phys. Rev. A 87 023809 DOI: 10.1103/PhysRevA.87.0238092015
[12] Xie H, Lin G W, Chen X, Chen Z H and Lin X M Phys. Rev. A 93 063860 DOI: 10.1103/PhysRevA.93.0638602016
[13] Liu Y C, Hu Y W, Wong C W and Xiao Y F Chin. Phys. B 22 114213 DOI: 10.1088/1674-1056/22/11/1142132013
[14] Chen X, Liu X W, Zhang K Y, Yuan C H and Zhang W P 2015 Acta Phys. Sin. 64 164211 (in Chinese) DOI: 10.7498/aps.64.164211
[15] Chen H J and Mi X W 2011 Acta Phys. Sin. 60 124206 (in Chinese) DOI: 10.7498/aps.60.124206
[16] Zhang D and Zheng Q Chin. Phys. Lett. 30 024213 DOI: 10.1088/0256-307X/30/2/0242132013
[17] Jiang C, Cui Y and Li X Chin. Phys. B 25 054204 DOI: 10.1088/1674-1056/25/5/0542042016
[18] Imamoglu A, Schmidt H, Woods G and Deutsch M Phys. Rev. Lett. 79 1467 DOI: 10.1103/PhysRevLett.79.14671997
[19] Lin H Y, Wang X Q, Yao Z H and Zou D D Opt. Express 28 17643 DOI: 10.1364/OE.3859812020
[20] Bennett S D, Stannigel K, Habraken S J M, Rabl P, Zoller P and Lukin M D Phys. Rev. A 87 013839 DOI: 10.1103/PhysRevA.87.0138392013
[21] Majumdar A and Gerace D Phys. Rev. B 87 235319 DOI: 10.1103/PhysRevB.87.2353192013
[22] Shen H Z, Zhou Y H and Yi X X Phys. Rev. A 90 023849 DOI: 10.1103/PhysRevA.90.0238492014
[23] Shen H Z, Zhou Y H and Yi X X Phys. Rev. A 91 063808 DOI: 10.1103/PhysRevA.91.0638082015
[24] Wang C Q Chin. Phys. Lett. 29 084209 DOI: 10.1088/0256-307X/29/8/0842092012
[25] Chang D E, Sorensen A S, Demler E A and Lukin M D Nat. Phys. 3 807 DOI: 10.1038/nphys7082007
[26] Gerace D, Tureci H E, Giovannetti V and Fazio R 2009 Nat. Phys. 5 281 DOI: 10.1038/nphys1223
[27] Fratini F, Mascarenhas E, Safari L, Poizat J P, Valente D, Gerace D and Santos M F Phys. Rev. Lett. 113 243601 DOI: 10.1103/PhysRevLett.113.2436012014
[28] Mascarenhas E, Gerace D, Valente D, Montangero S and Santos M F Europhys. Lett. 106 54003 DOI: 10.1209/0295-5075/106/540032014
[29] Liew T C H and Savona V Phys. Rev. Lett. 104 183601 DOI: 10.1103/PhysRevLett.104.1836012010
[30] Bayer M, Gutbrod T, Reithmaier J P, et al.Phys. Rev. Lett. 81 2582 DOI: 10.1103/PhysRevLett.81.25821998
[31] Rakovich Y P and Donegan J F Laser Photon. Rev. 4 179 DOI: 10.1002/lpor.2009100012010
[32] Shen H Z, Xu S, Zhou Y H, Wang G and Yi X X J. Phys. B: At. Mol. Opt. Phys. 51 035503 DOI: 10.1088/1361-6455/aa9c902018
[33] Ni H, Liang C H, Wang F, Chen Y H, Ponomarenko S A and Cai Y J Chin. Phys. B 29 064203 DOI: 10.1088/1674-1056/ab83732020
[34] Li H, Zhang S Q, Guo M, Li M X and Song L J 2019 Acta Phys. Sin. 68 124203 (in Chinese) DOI: 10.7498/aps.68.20190154
[35] Shi H Q, Xie Z Q, Xu X W and Liu N H 2018 Acta Phys. Sin. 67 044203 (in Chinese) DOI: 10.7498/aps.67.20171599
[36] Zhang W, Yu Z Y, Liu Y M and Peng Y W Phys. Rev. A 89 043832 DOI: 10.1103/PhysRevA.89.0438322014
[37] Bamba M and Ciuti C Appl. Phys. Lett. 99 171111 DOI: 10.1063/1.36562502015
[38] Xu X W and Li Y J J. Phys. B: At. Mol. Opt. Phys. 46 035502 DOI: 10.1088/0953-4075/46/3/0355022013
[39] Ferretti S, Savona V and Gerace D New J. Phys. 15 025012 DOI: 10.1088/1367-2630/15/2/0250122013
[40] Flayac H and Savona V Phys. Rev. A 88 033836 DOI: 10.1103/PhysRevA.88.0338362013
[41] Gerace D and Savona V Phys. Rev. A 89 031803 DOI: 10.1103/PhysRevA.89.0318032014
[42] Flayac H and Savona V Phys. Rev. A 95 043838 DOI: 10.1103/PhysRevA.95.0438382017
[43] Zhou Y H, Shen H Z and Yi X X Phys. Rev. A 92 023838 DOI: 10.1103/PhysRevA.92.0238382015
[44] Liu Y X, Xu X W, Miranowicz A and Nori F Phys. Rev. A 89 043818 DOI: 10.1103/PhysRevA.89.0438182014
[45] Xiang G Y and Guo G C Chin. Phys. B 22 110601 DOI: 10.1088/1674-1056/22/11/1106012013
[46] Zhang L J and Xiao M Chin. Phys. B 22 110310 DOI: 10.1088/1674-1056/22/11/1103102013
[47] Zhou Y H, Wu Q C, Ye B L, Xue L Y and Shen H Z Int. J. Theor. Phys. 58 472 DOI: 10.1007/s10773-018-3947-42019
[1] Manipulation of nonreciprocal unconventional photon blockade in a cavity-driven system composed of an asymmetrical cavity and two atoms with weak dipole-dipole interaction
Xinqin Zhang(张新琴), Xiuwen Xia(夏秀文), Jingping Xu(许静平), Haozhen Li(李浩珍), Zeyun Fu(傅泽云), and Yaping Yang(羊亚平). Chin. Phys. B, 2022, 31(7): 074204.
[2] Multiplexing technology based on SQUID for readout of superconducting transition-edge sensor arrays
Xinyu Wu(吴歆宇), Qing Yu(余晴), Yongcheng He(何永成), Jianshe Liu(刘建设), and Wei Chen(陈炜). Chin. Phys. B, 2022, 31(10): 108501.
[3] Chirp-dependent ionization of hydrogen atoms in the presence of super-intense laser pulses
Fengzheng Zhu(朱风筝), Xiaoyu Liu(刘晓煜), Yue Guo(郭月), Ningyue Wang(王宁月), Liguang Jiao(焦利光), and Aihua Liu(刘爱华). Chin. Phys. B, 2021, 30(9): 094209.
[4] Stable quantum interference enabled by coexisting detuned and resonant STIRAPs
Dan Liu(刘丹), Yichun Gao(高益淳), Jianqin Xu(许建琴), and Jing Qian(钱静). Chin. Phys. B, 2021, 30(5): 053701.
[5] Absorption interferometer of two-sided cavity
Miao-Di Guo(郭苗迪) and Hong-Mei Li(李红梅). Chin. Phys. B, 2021, 30(5): 054202.
[6] Optimization of pick-up coils for weakly damped SQUID gradiometers
Kang Yang(杨康), Jialei Wang(王佳磊), Xiangyan Kong(孔祥燕), Ruihu Yang(杨瑞虎), Hua Chen(陈桦). Chin. Phys. B, 2018, 27(5): 050701.
[7] Performance study of aluminum shielded room for ultra-low-field magnetic resonance imaging based on SQUID: Simulations and experiments
Bo Li(李波), Hui Dong(董慧), Xiao-Lei Huang(黄小磊), Yang Qiu(邱阳), Quan Tao(陶泉), Jian-Ming Zhu(朱建明). Chin. Phys. B, 2018, 27(2): 020701.
[8] Dynamic properties of atomic collective decay in cavity quantum electrodynamics
Yu-Feng Han(韩玉峰), Cheng-Jie Zhu(朱成杰), Xian-Shan Huang(黄仙山), Ya-Ping Yang(羊亚平). Chin. Phys. B, 2018, 27(12): 124206.
[9] Modulation depth of series SQUIDs modified by Josephson junction area
Jie Liu(刘杰), He Gao(高鹤), Gang Li(李刚), Zheng Wei Li(李正伟), Kamal Ahmada, Zhang Ying Shan(张颖珊), Jian She Liu(刘建设), Wei Chen(陈炜). Chin. Phys. B, 2017, 26(9): 098501.
[10] Quantum interference between heralded single photon stateand coherent state
Lei Yang(杨磊), Xiaoxin Ma(马晓欣), Xiaoying Li(李小英). Chin. Phys. B, 2017, 26(7): 074206.
[11] Macroscopic resonant tunneling in an rf-SQUID flux qubit under a single-cycle sinusoidal driving
Jianxin Shi(史建新), Weiwei Xu(许伟伟), Guozhu Sun(孙国柱), Jian Chen(陈健), Lin Kang(康琳), Peiheng Wu(吴培亨). Chin. Phys. B, 2017, 26(4): 047402.
[12] Ballistic transport and quantum interference in InSb nanowire devices
Sen Li(李森), Guang-Yao Huang(黄光耀), Jing-Kun Guo(郭景琨), Ning Kang(康宁), Philippe Caroff, Hong-Qi Xu(徐洪起). Chin. Phys. B, 2017, 26(2): 027305.
[13] Tunable thermoelectric properties in bended graphene nanoribbons
Chang-Ning Pan(潘长宁), Jun He(何军), Mao-Fa Fang(方卯发). Chin. Phys. B, 2016, 25(7): 078102.
[14] Effects of magnetic field on photon-induced quantum transport in a single dot-cavity system
Nzar Rauf Abdullah, Aziz H Fatah, Jabar M A Fatah. Chin. Phys. B, 2016, 25(11): 114206.
[15] Entanglement and non-Markovianity of a multi-level atom decaying in a cavity
Zi-Long Fan(范子龙), Yu-Kun Ren(任玉坤), Hao-Sheng Zeng(曾浩生). Chin. Phys. B, 2016, 25(1): 010303.
No Suggested Reading articles found!