Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(8): 084207    DOI: 10.1088/1674-1056/27/8/084207
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Construction of two-qubit logical gates by transmon qubits in a three-dimensional cavity

Han Cai(蔡涵), Qi-Chun Liu(刘其春), Chang-Hao Zhao(赵昌昊), Ying-Shan Zhang(张颖珊), Jian-She Liu(刘建设), Wei Chen(陈炜)
Tsinghua National Laboratory for Information Science and Technology, Department of Microelectronics and Nanoelectronics, Institute of Microelectronics, Tsinghua University, Beijing, China
Abstract  We report the implementation of qubit-qubit coupling in a three-dimensional (3D) cavity, using the exchange of virtual photons, to realize logical operations. We measure single photon and multi-photon transitions in this qubit-qubit coupling system and obtain its energy avoided-crossing spectrum. With ac-Stark effect, fast control of the qubits is achieved to tune the effective coupling on and off and the state-swap gate √SWAP is successfully constructed. Moreover, using two-photon transition between the ground state and doubly excited states, a kind of two-photon Rabi-like oscillation is observed. A quarter period of this oscillation corresponds to the logical gate √bSWAPP, which is used for generating Bell states. √bSWAPP and √iSWAP are the foundations of future preparation of two-qubit Bell states and realization of CNOT gate.
Keywords:  3D transmon qubit      qubit-qubit coupling      coherent state exchange      Rabi-like oscillation  
Received:  12 March 2018      Revised:  17 April 2018      Accepted manuscript online: 
PACS:  42.50.Ct (Quantum description of interaction of light and matter; related experiments)  
  03.67.Lx (Quantum computation architectures and implementations)  
  74.78.Na (Mesoscopic and nanoscale systems)  
  85.25.Hv (Superconducting logic elements and memory devices; microelectronic circuits)  
Fund: Project supported by the National Basic Research and Development Program of China (Grant No. 2011CBA00304), the National Natural Science Foundation of China (Grant Nos. 60836001 and 61174084), and the Tsinghua University Initiative Scientific Research Program, China (Grant No. 20131089314).
Corresponding Authors:  Wei Chen     E-mail:  weichen@tsinghua.edu.cn

Cite this article: 

Han Cai(蔡涵), Qi-Chun Liu(刘其春), Chang-Hao Zhao(赵昌昊), Ying-Shan Zhang(张颖珊), Jian-She Liu(刘建设), Wei Chen(陈炜) Construction of two-qubit logical gates by transmon qubits in a three-dimensional cavity 2018 Chin. Phys. B 27 084207

[1] Devoret M H and Schoelkopf R J 2013 Science 339 1169
[2] Masoud Mohseni, Peter Read, Hartmut Neven, et al. 2017 Nature 534 171
[3] Chow J M, Gambetta J M, Córcoles A D, et al. 2012 Phys. Rev. Lett. 109 060501
[4] Barends R, Kelly J, Megrant A, et al. 2014 Nature 508 500
[5] Hatridge M, Shankar S, Mirrahimi M, et al. 2013 Science 339 178
[6] Zhong Y P, Li C Y, Wang H H, et al. 2013 Chin. Phys. B 22 110313
[7] Vijay R, Macklin C, Slichter D H, et al. 2012 Nature 490 77
[8] Reed M D, DiCarlo L, Johnson B R, et al. 2010 Phys. Rev. Lett. 105 173601
[9] Jeffrey E, Sank D, Mutus J Y, et al. 2014 Phys. Rev. Lett. 112 190504
[10] Barends R, Shabani A, Lamata L, et al. 2016 Nature 534 222
[11] Gambetta J M, Chow J M and Steffen M arXiv: 1510.04375v1 [quant-ph]
[12] Kelly J, Barends R, Fowler A G, et al. 2015 Nature 519 66
[13] Chow J M, Gambetta J M, Magesan E, et al. 2014 Nat. Commun. 5 4015
[14] Reed M D, DiCarlo L, Nigg S E, et al. 2012 Nature 482 382
[15] Lucero E, Barends R, Chen Y, et al. 2012 Nat. Phys. 8 719
[16] Chen Yu, Neill C, Roushan P, et al. 2014 Phys. Rev. Lett. 113 220502
[17] Neeley M, Bialczak R C, Lenander M, et al. 2010 Nature 467 570
[18] DiCarlo L, Reed M D, Sun L, et al. 2010 Nature 467 574
[19] Bialczak R C, Ansmann M, Hofheinz M, et al. 2010 Nat. Phys. 6 409
[20] Ansmann M, Wang H, Bialczak R C, et al. 2009 Nature 461 504
[21] Evan Jeffrey, Daniel Sank, Mutus J Y, et al. 2014 Phys. Rev. Lett. 112 190504
[22] Majer J, Chow J M, Gambetta J M, et al. 2007 Nature 449 443
[23] Sank D, Chen Z, Khezri M, et al. 2016 Phys. Rev. Lett. 117 190503
[24] Mariantoni M, Wang H, Yamamoto T, et al. 2011 Science 334 61
[25] Poletto S, Gambetta Jay M, Merkel Seth T, et al. 2012 Phys. Rev. Lett. 109 240505
[1] Nonreciprocal two-photon transmission and statistics in a chiral waveguide QED system
Lei Wang(王磊), Zhen Yi(伊珍), Li-Hui Sun(孙利辉), and Wen-Ju Gu(谷文举). Chin. Phys. B, 2022, 31(5): 054206.
[2] Quantum mechanical solution to spectral lineshape in strongly-coupled atom-nanocavity system
Jian Zeng(曾健) and Zhi-Yuan Li(李志远). Chin. Phys. B, 2022, 31(4): 043202.
[3] Topological phases and type-II edge state in two-leg-coupled Su-Schrieffer-Heeger chains
Tianqi Luo(罗天琦), Xin Guan(关欣), Jingtao Fan(樊景涛), Gang Chen(陈刚), and Suo-Tang Jia(贾锁堂). Chin. Phys. B, 2022, 31(1): 014208.
[4] Ideal optomechanically induced transparency generation in a cavity optoelectromechanical system
Jing Wang(王婧) and Xue-Dong Tian(田雪冬). Chin. Phys. B, 2021, 30(10): 104211.
[5] Fano interference and transparency in a waveguide-nanocavity hybrid system with an auxiliary cavity
Yu-Xin Shu(树宇鑫), Xiao-San Ma(马小三), Xian-Shan Huang(黄仙山), Mu-Tian Cheng(程木田), and Jun-Bo Han(韩俊波). Chin. Phys. B, 2021, 30(10): 104204.
[6] Tunable optomechanically induced transparency and fast-slow light in a loop-coupled optomechanical system
Qinghong Liao(廖庆洪), Xiaoqian Wang(王晓倩), Gaoqian He(何高倩), and Liangtao Zhou(周良涛). Chin. Phys. B, 2021, 30(9): 094205.
[7] Controllable four-wave mixing response in a dual-cavity hybrid optomechanical system
Lei Shang(尚蕾), Bin Chen(陈彬), Li-Li Xing(邢丽丽), Jian-Bin Chen(陈建宾), Hai-Bin Xue(薛海斌), and Kang-Xian Guo(郭康贤). Chin. Phys. B, 2021, 30(5): 054209.
[8] Quantum plasmon enhanced nonlinear wave mixing in graphene nanoflakes
Hanying Deng(邓寒英), Changming Huang(黄长明), Yingji He(何影记), and Fangwei Ye(叶芳伟). Chin. Phys. B, 2021, 30(4): 044213.
[9] Realization of adiabatic and diabatic CZ gates in superconducting qubits coupled with a tunable coupler
Huikai Xu(徐晖凯), Weiyang Liu(刘伟洋), Zhiyuan Li(李志远), Jiaxiu Han(韩佳秀), Jingning Zhang(张静宁), Kehuan Linghu(令狐克寰), Yongchao Li(李永超), Mo Chen(陈墨), Zhen Yang(杨真), Junhua Wang(王骏华), Teng Ma(马腾), Guangming Xue(薛光明), Yirong Jin(金贻荣), and Haifeng Yu(于海峰). Chin. Phys. B, 2021, 30(4): 044212.
[10] Ground-state cooling based on a three-cavity optomechanical system in the unresolved-sideband regime
Jing Wang(王婧). Chin. Phys. B, 2021, 30(2): 024204.
[11] Phase-sensitive Landau-Zener-Stückelberg interference in superconducting quantum circuit
Zhi-Xuan Yang(杨智璇), Yi-Meng Zhang(张一萌), Yu-Xuan Zhou(周宇轩), Li-Bo Zhang(张礼博), Fei Yan(燕飞), Song Liu(刘松), Yuan Xu(徐源), and Jian Li(李剑). Chin. Phys. B, 2021, 30(2): 024212.
[12] Exact analytical results for a two-level quantum system under a Lorentzian-shaped pulse field
Qiong-Tao Xie(谢琼涛), Xiao-Liang Liu(刘小良). Chin. Phys. B, 2020, 29(6): 060305.
[13] All-optical switch and transistor based on coherent light-controlled single two-level atom coupling with two nanowires
Xin-Qin Zhang(张新琴), Xiu-Wen Xia(夏秀文), Jing-Ping Xu(许静平), Mu-Tian Cheng(程木田), Ya-Ping Yang(羊亚平). Chin. Phys. B, 2019, 28(11): 114207.
[14] Tunable coupling between Xmon qubit and coplanar waveguide resonator
He-Kang Li(李贺康), Ke-Min Li(李科敏), Hang Dong(董航), Qiu-Jiang Guo(郭秋江), Wu-Xin Liu(刘武新), Zhan Wang(王战), Hao-Hua Wang(王浩华), Dong-Ning Zheng(郑东宁). Chin. Phys. B, 2019, 28(8): 080305.
[15] Nonlinear coherent perfect photon absorber in asymmetrical atom-nanowires coupling system
Xiuwen Xia(夏秀文), Xinqin Zhang(张新琴), Jingping Xu(许静平), Mutian Cheng(程木田), Yaping Yang(羊亚平). Chin. Phys. B, 2018, 27(11): 114205.
No Suggested Reading articles found!