ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Finite-dimensional pair coherent state engendered via the nonlinear Bose operator realization and its Wigner phase-space distributions |
Jianming Liu(刘建明)1, Xiangguo Meng(孟祥国)2 |
1 Department of Computer, Weifang Medical University, Weifang 261000, China; 2 Shandong Provincial Key Laboratory of Optical Communication Science and Technology, School of Physical Science and Information Engineering, Liaocheng University, Liaocheng 252059, China |
|
|
Abstract We theoretically analyze the photon number distribution, entanglement entropy, and Wigner phase-space distribution, considering the finite-dimensional pair coherent state (FDPCS) generated in the nonlinear Bose operator realization. Our results show that the photon number distribution is governed by the two-mode photon number sum q of the FDPCS, the entanglement of the FDPCS always increases quickly at first and then decreases slowly for any q, and the nonclassicality of the FDPCS for odd q is more stronger than that for even q.
|
Received: 22 September 2019
Revised: 11 October 2019
Accepted manuscript online:
|
PACS:
|
42.50.-p
|
(Quantum optics)
|
|
05.30.-d
|
(Quantum statistical mechanics)
|
|
03.65.-w
|
(Quantum mechanics)
|
|
Corresponding Authors:
Jianming Liu, Xiangguo Meng
E-mail: sdwfljm@126.com;mengxiangguo1978@sina.com
|
Cite this article:
Jianming Liu(刘建明), Xiangguo Meng(孟祥国) Finite-dimensional pair coherent state engendered via the nonlinear Bose operator realization and its Wigner phase-space distributions 2019 Chin. Phys. B 28 124206
|
[36] |
Meng X G, Wang Z, Fan H Y and Wang J S 2012 J. Opt. Soc. Am. B 29 3141
|
[1] |
Eisert J, Scheel S and Plenio M B 2002 Phys. Rev. Lett. 89 137903
|
[37] |
Du C X, Meng X G, Zhang R and Wang J S 2017 Chin. Phys. B 26 120301
|
[2] |
Takahashi H, Neergaard-Nielsen J S, Takeuchi M, Takeoka M, Hayasaka K, Furusawa A and Sasaki M 2010 Nat. Photon. 4 178
|
[38] |
Wang J S, Meng X G and Fan H Y 2017 J. Mod. Opt. 64 1398
|
[3] |
Kurochkin Y, Prasad A S and Lvovsky A I 2014 Phys. Rev. Lett. 112 070402
|
[39] |
Meng X G, Wang Z, Wang J S and Fan H Y 2013 J. Opt. Soc. Am. B 30 1614
|
[4] |
Hu L Y, Liao Z Y and Zubairy M S 2017 Phys. Rev. A 95 012310
|
[40] |
Fan H Y, Lu H L and Fan Y 2006 Ann. Phys. 321 480
|
[5] |
Huang P, He G, Fang J and Zeng G 2013 Phys. Rev. A 87 012317
|
[41] |
Xu Y J and Meng X G 2019 Laser Phys. 29 065002
|
[6] |
Carranza R and Gerry C C 2012 J. Opt. Soc. Am. B 29 2581
|
[42] |
Lv H Y, Wang J S, Zhang X Y, Wu M Y, Liang B L and Meng X G 2019 Chin. Phys. B 28 090302
|
[7] |
Hou L L, Sui Y X, Wang S and Xu X F 2019 Chin. Phys. B 28 044203
|
[43] |
Meng X G, Goan H S, Wang J S and Zhang R 2018 Opt. Commun. 411 15
|
[8] |
Hou L L, Xue J Z, Sui Y X and Wang S 2019 Chin. Phys. B 28 094217
|
[44] |
Wang J S, Meng X G and Fan H Y 2019 Chin. Phys. B 28 100301
|
[9] |
Agarwal G S and Biswas A 2005 J. Opt. B: Quan. Semi. Opt. 7 350
|
[45] |
Meng X G, Wang J S and Liang B L 2013 Chin. Phys. B 22 030307
|
[10] |
Mancini S and Tombesi P 2003 Quantum Inf. Comput. 3 106
|
[46] |
Wang Z, Meng X G and Fan H Y 2013 J. Phys. A: Math. Theor. 46 135305
|
[11] |
Gong Y X 2013 Phys. Rev. A 88 043841
|
[47] |
Wang Z, Meng X G and Fan H Y 2012 J. Opt. Soc. Am. B 29 397
|
[12] |
Gá bris A and Agarwal G S 2007 Int. J. Quan. Inf. 5 17
|
[48] |
Meng X G, Wang J S, Liang B L and Du C X 2018 J. Exp. Theor. Phys. 127 383
|
[13] |
Gerry C C and Mimih J 2010 Phys. Rev. A 82 013831
|
[49] |
Meng X G, Wang J S and Liang B L 2010 Opt. Commun. 283 4025
|
[14] |
Zhu F, Zhang C H, Liu A P and Wang Q 2016 Phys. Lett. A 380 1408
|
[15] |
Wang X, Wang Y, Chen R K, Zhou C, Li H W and Bao W S 2016 Laser Phys. 26 065203
|
[16] |
Agarwal G S 1986 Phys. Rev. Lett. 57 827
|
[17] |
Gou S C, Steinbach J and Knight P L 1996 Phys. Rev. A 54 R1014
|
[18] |
Gilchrist A and Munro W J 2000 J. Opt. B: Quantum Semiclass. Opt. 2 47
|
[19] |
Gerry C C, Mimih J and Birrittella R 2011 Phys. Rev. A 84 023810
|
[20] |
Gerry C C and Grobe R 1995 Phys. Rev. A 51 1698
|
[21] |
Gou S C, Steinbach J and Knight P L 1996 Phys. Rev. A 54 4315
|
[22] |
Chung W S and Hassanabadi H 2019 Eur. Phys. J. Plus 134 394
|
[23] |
Lee C T 1990 Phys. Rev. A 41 1569
|
[24] |
Obada A S F and Khalil E M 2006 Opt. Commun. 260 19
|
[25] |
Meng X G, Wang J S, Liang B L and Han C X 2018 Front. Phys. 13 130322
|
[26] |
Meng X G, Wang Z, Fan H Y, Wang J S and Yang Z S 2012 J. Opt. Soc. Am. B 29 1844
|
[27] |
Bennett C H, Bernstein H J, Popescu S and Schumacher B 1996 Phys. Rev. A 53 2046
|
[28] |
Xu X X 2015 Phys. Rev. A 92 012318
|
[29] |
Li K C, Meng X G and Wang J S 2019 Commun. Theor. Phys. 71 807
|
[30] |
Li K C, Meng X G and Wang J S 2019 Int. J. Theor. Phys. 58 2521
|
[31] |
Fan H Y, Zaidi H R and Klauder J R 1987 Phys. Rev. D 35 1831
|
[32] |
Fan H Y 2004 Int. J. Mod. Phys. B 18 1387
|
[33] |
Meng X G, Liu J M, Wang J S and Fan H Y 2019 Eur. Phys. J. D 73 32
|
[34] |
Fan H Y and Klauder J R 1994 Phys. Rev. A 49 704
|
[35] |
Meng X G, Wang J S and Fan H Y 2011 Opt. Commun. 284 2070
|
[36] |
Meng X G, Wang Z, Fan H Y and Wang J S 2012 J. Opt. Soc. Am. B 29 3141
|
[37] |
Du C X, Meng X G, Zhang R and Wang J S 2017 Chin. Phys. B 26 120301
|
[38] |
Wang J S, Meng X G and Fan H Y 2017 J. Mod. Opt. 64 1398
|
[39] |
Meng X G, Wang Z, Wang J S and Fan H Y 2013 J. Opt. Soc. Am. B 30 1614
|
[40] |
Fan H Y, Lu H L and Fan Y 2006 Ann. Phys. 321 480
|
[41] |
Xu Y J and Meng X G 2019 Laser Phys. 29 065002
|
[42] |
Lv H Y, Wang J S, Zhang X Y, Wu M Y, Liang B L and Meng X G 2019 Chin. Phys. B 28 090302
|
[43] |
Meng X G, Goan H S, Wang J S and Zhang R 2018 Opt. Commun. 411 15
|
[44] |
Wang J S, Meng X G and Fan H Y 2019 Chin. Phys. B 28 100301
|
[45] |
Meng X G, Wang J S and Liang B L 2013 Chin. Phys. B 22 030307
|
[46] |
Wang Z, Meng X G and Fan H Y 2013 J. Phys. A: Math. Theor. 46 135305
|
[47] |
Wang Z, Meng X G and Fan H Y 2012 J. Opt. Soc. Am. B 29 397
|
[48] |
Meng X G, Wang J S, Liang B L and Du C X 2018 J. Exp. Theor. Phys. 127 383
|
[49] |
Meng X G, Wang J S and Liang B L 2010 Opt. Commun. 283 4025
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|