|
|
Multi-copy entanglement purification with practical spontaneous parametric down conversion sources |
Shuai-Shuai Zhang(张帅帅)1,3, Qi Shu(祁舒)1,3, Lan Zhou(周澜)2, Yu-Bo Sheng(盛宇波)1 |
1 Key Laboratory of Broadband Wireless Communication and Sensor Network Technology of Ministry of Education, Nanjing University of Posts and Telecommunications, Nanjing 210003, China; 2 College of Mathematics & Physics, Nanjing University of Posts and Telecommunications, Nanjing 210003, China; 3 Bell Honors School, Nanjing University of Posts and Telecommunications, Nanjing 210003, China |
|
|
Abstract Entanglement purification is to distill the high quality entanglement from the low quality entanglement with local operations and classical communications. It is one of the key technologies in long-distance quantum communication. We discuss an entanglement purification protocol (EPP) with spontaneous parametric down conversion (SPDC) sources, in contrast to previous EPP with multi-copy mixed states, which requires ideal entanglement sources. We show that the SPDC source is not an obstacle for purification, but can benefit the fidelity of the purified mixed state. This EPP works for linear optics and is feasible in current experiment technology.
|
Received: 11 January 2017
Revised: 08 February 2017
Accepted manuscript online:
|
PACS:
|
03.67.Hk
|
(Quantum communication)
|
|
03.65.Ud
|
(Entanglement and quantum nonlocality)
|
|
03.67.Lx
|
(Quantum computation architectures and implementations)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11474168 and 61401222), the Natural Science Foundation of Jiangsu Province, China (Grant No. BK20151502), the Qing Lan Project in Jiangsu Province, China, and a Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions, China. |
Corresponding Authors:
Yu-Bo Sheng
E-mail: shengyb@njupt.edu.cn
|
Cite this article:
Shuai-Shuai Zhang(张帅帅), Qi Shu(祁舒), Lan Zhou(周澜), Yu-Bo Sheng(盛宇波) Multi-copy entanglement purification with practical spontaneous parametric down conversion sources 2017 Chin. Phys. B 26 060307
|
[1] |
Bennett C H, Brassard G, Crepeau C, Jozsa R, Peres A and Wootters W K 1993 Phys. Rev. Lett. 70 1895
|
[2] |
Long G L and Liu X S 2002 Phys. Rev. A 65 032302
|
[3] |
Deng F G, Long G L and Liu X S 2003 Phys. Rev. A 68 042317
|
[4] |
Wang C, Deng F G, Li Y S, Liu X S and Long G L 2005 Phys. Rev. A 71 042305
|
[5] |
Hu J Y, Yu B, Jing M Y, Xiao L T, Jia S T, Qin G Q and Long G L 2016 Light Sci. Appl. 5 e16144
|
[6] |
Hillery M, Bužek V and Berthiaume A 1999 Phys. Rev. A 59 1829
|
[7] |
Ekert A K 1991 Phys. Rev. Lett. 67 661
|
[8] |
Wang Q, Zhou X Y and Guo G C 2016 Sci. Rep. 6 35394
|
[9] |
Wang Q, Zhang C H and Wang X B 2016 Phys. Rev. A 93 032312
|
[10] |
Xu J S and Li C F 2015 Sci. Bull. 60 141
|
[11] |
Zhang C, Li C F and Guo G C 2015 Sci. Bull. 60 249
|
[12] |
Ma H X, Bao W S, Li H W and Chou C 2016 Chin. Phys. B 25 080309
|
[13] |
Tan Y G and Liu Q 2016 Chin. Phys. Lett. 33 090303
|
[14] |
Chang Y, Zhang S B, Yan L L and Han G H 2016 Chin. Phys. B 24 050307
|
[15] |
Wang M Y, Yan F L and Gao T 2016 Sci. Rep. 6 29853
|
[16] |
Ding D, He Y Q, Yan F L and Gao T 2015 Acta Phys. Sin. 64 160301 (in Chinese)
|
[17] |
Ye T Y 2015 Sci. China-Phys. Mech. Astron. 58 040301
|
[18] |
Lu X M, Zhang L J, Wang Y G, Chen W, Huang D J, Li D, Wang S, He D Y, Yin Z Q, Zhou Y, Hui C and Han Z F 2016 Sci. China-Phys. Mech. Astron. 58 120301
|
[19] |
Bennett C H, Brassard G, Popescu S, Schumacher B, Smolin J A and Wootters W K 1996 Phys. Rev. Lett. 76 722
|
[20] |
Simon C and Pan J W 2002 Phys. Rev. Lett. 89 257901
|
[21] |
Sheng Y B and Deng F G 2010 Phys. Rev. A 81 032307
|
[22] |
Sheng Y B and Deng F G 2010 Phys. Rev. A 82 044305
|
[23] |
Li X H 2010 Phys. Rev. A 82 044304
|
[24] |
Deng F G 2011 Phys. Rev. A 83 062316
|
[25] |
Deng F G 2011 Phys. Rev. A 84 052312
|
[26] |
Sheng Y B and Zhou L 2014 Laser Phys. Lett. 11 085203
|
[27] |
Sheng Y B and Zhou L 2015 Sci. Rep. 5 7815
|
[28] |
Deutsch D, Ekert A, Jozsa R, Macchiavello C, Popescu S and Sanpera A 1996 Phys. Rev. Lett. 77 2818
|
[29] |
Pan J W, Simon C and Zeilinger A 2001 Nature 410 1067
|
[30] |
Pan J W, Gasparonl S, Ursin R, Weihs G and Zeilinger A 2003 Nature 423 417
|
[31] |
Sangouard N, Simon C, Coudreau T and Gisin N 2008 Phys. Rev. A 78 050301
|
[32] |
Sheng Y B, Deng F G and Zhou H Y 2008 Phys. Rev. A 77 042308
|
[33] |
Wang C, Zhang Y and Jin G S 2011 Phys. Rev. A 84 032307
|
[34] |
Xiao L, Wang C, Zhang W, Huang Y D, Peng J D and Long G L 2008 Phys. Rev. A 77 042315
|
[35] |
Wang C, Zhang Y and Jin G S 2011 Quantum Inform. Comput. 11 988
|
[36] |
Gonta D and van Loock P 2011 Phys. Rev. A 84 042303
|
[37] |
Sheng Y B, Zhou L and Long G L 2013 Phys. Rev. A 88 022302
|
[38] |
Zwerger M, Briegel H J and Dür W 2013 Phys. Rev. Lett. 110 260503
|
[39] |
Zwerger M, Briegel H J and Dür W 2014 Phys. Rev. A 90 012314
|
[40] |
Ren B C, Du F F and Deng F G 2014 Phys. Rev. A 90 052309
|
[41] |
Wang G Y, Liu Q and Deng F G 2016 Phys. Rev. A 94 032319
|
[42] |
He Y Q, Ding D, Yan F L and Gao T 2015 J. Phys. B: At. Mol. Opt. Phys. 48 055501
|
[43] |
Zhou L and Sheng Y B 2016 Sci. Rep. 6 28813
|
[44] |
Dong D, Zhang Y L, Zou C L, Zou X B and Guo G C 2015 Chin. Phys. B 24 100306
|
[45] |
Feng X L, Gong S Q and Xu Z Z 2000 Phys. Lett. A 271 44
|
[46] |
Metwally N and Obada A S 2006 Phys. Lett. A 352 45
|
[47] |
Chi D P, Kim T and Lee S 2012 Phys. Lett. A 376 143
|
[48] |
Xu Y Y, Feng X L and Zhang Z M 2012 Chin. Opt. Lett. 10 042701
|
[49] |
JafarpourM and Ashrafpouri F 2015 Quantum Inform. Process. 14 607
|
[50] |
Cai C, Zhou L and Sheng Y B 2015 Chin. Phys. B 24 120306
|
[51] |
Deng F G, Ren B C and Li X H 2017 Sci. Bull. 62 46
|
[52] |
Yamamoto T, Koashi M and Imoto N 2001 Phys. Rev. A 64 012304
|
[53] |
Wang X L, Chen L K, Li W, Huang H L, Liu C, Chen C, Luo Y H, Su Z E, Wu D, Li Z D, Lu H, Hu Y, Jiang X, Peng C Z, Li L, Liu N L, Chen Y A, Lu C Y and Pan J W 2016 Phys. Rev. Lett. 117 210502
|
[54] |
Wang X L, Cai X D, Su Z E, Chen M C, Wu D, Li L, Liu N L, Lu C Y and Pan J W 2015 Nature 518 516
|
[55] |
Zhang C, Huang Y F, Wang Zhao, Liu B H, Li C F and Guo G C 2016 Phys. Rev. Lett. 115 260402
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|