Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(5): 058503    DOI: 10.1088/1674-1056/26/5/058503
RAPID COMMUNICATION Prev  

A high-temperature superconducting filter withcontrollable transmission zero

Tianqi Gao(高天琪)1, Bin Wei(魏斌)1, Yong Heng(衡勇)2
1 State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China;
2 Beijing Institute of Electronic System Engineering, Beijing 100854, China
Abstract  

This paper presents a novel microstrip feedline structure to introduce an extra and controllable transmission zero (TZ) with high rejection for a narrowband filter. This structure loads a reconfigurable capacitor at the end of the input feedline without changing the main structure of the filter. The capacitor is recognized by a 2-bit inter-digital capacitor array. The asymmetrical microstrip feedline structure is suitable for multiple-pole filter designs. A low-loss six-pole high-temperature superconducting bandpass filter with a reconfigurable TZ is designed and fabricated. The center frequency of the filter is 5.22 GHz with TZ at the lower stopband. The TZ can be tuned among four different states. The out-of-band rejection at the TZ frequency is higher than 90 dB, and the insertion loss is lower than 0.92 dB. The measured results are consistent with the simulations.

Keywords:  superconducting      narrowband filter      transmission zero  
Received:  14 March 2017      Accepted manuscript online: 
PACS:  85.25.-j (Superconducting devices)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant No. 61371009) and the Chinese Ministry of Science and Technology (Grant No. 2014AA032703).

Corresponding Authors:  Bin Wei     E-mail:  weibin@mail.tsinghua.edu.cn

Cite this article: 

Tianqi Gao(高天琪), Bin Wei(魏斌), Yong Heng(衡勇) A high-temperature superconducting filter withcontrollable transmission zero 2017 Chin. Phys. B 26 058503

[1] Zuo T, Zhao X J, Wang X K, Yue H W, Fang L and Yan S L 2009 Acta Phys. Sin. 58 4194 (in Chinese)
[2] Zhu H Y, Yao A Q and Zhong M 2016 Chin. Phys. B 25 107301
[3] Zhang Q S, Zhu F J and Zhou H S 2015 Chin. Phys. B 24 107506
[4] Liu X Y, Zhu L and Feng Y J 2016 Chin. Phys. B 25 034101
[5] Zeng Z, Yao Y and Zhuang Y 2015 Acta Phys. Sin. 64 209 (in Chinese)
[6] Wang J, Glesk I and Chen L R 2016 Sci. Bull. 61 879
[7] Zhu L and Menzel W 2003 IEEE Microw. Wireless Compon. Lett. 13 16
[8] Piao Y, Zhang X, Guo X, Jin S, Cao B, Peng H, Lu X and Gao B 2008 Microwave Opt. Technol. Lett. 50 2455
[9] Cui B, Zhang X Q, Sun L, Bian Y B, Guo J, Wang J, Li C G, Li H, Zhang Q and He Y S 2010 Sci. Bull. 55 1367
[10] Duran-Sindreu M, Bonache J and Martin F 2011 IEEE Microw. Wireless Compon. Lett. 21 664
[11] Wong S W, Chen Z N and Chu Q X 2011 Electron. Lett. 47 1232
[12] Liu H W, Wen P, Zhao Y L, Ren B P, Wang X M and Guan X H 2014 IEEE Trans. Appl. Supercond. 24 130
[13] Jin J Y, Lin X Q, Jiang Y, Wang L and Fan Y 2014 Int. J. RF Microwave Comput. Aided Eng. 24 451
[14] Zhang T L, Zhou L G, Yang K, Luo C, Jiang M Y, Dang W and Ren X Y 2015 Physica C 519 153
[15] Zhang H and Chen K J 2006 IEEE Microw. Wireless Compon. Lett. 16 249
[16] Tu W H 2008 IET Microw. Antennas Propag. 2 373
[17] Tang S C, Yu C H, Chiou Y C and Kuo J T 2009 Asia Pacific Microwave Conference 2009 December 7, 2009 Singapore Singapore p. 2064
[18] Zong B F, Wang G M, Liang J G and Zhou C 2015 IEEE Microw. Wireless Compon. Lett. 25 88
[19] Chiou Y C and Rebeiz G M 2011 IEEE Trans. Microw. Theory Tech. 59 2872
[20] Zhou R, Mandal I and Zhang H 2013 Microwave Opt. Technol. Lett. 55 1526
[21] Yang T and Rebeiz G M 2015 IEEE Trans. Microw. Theory Tech. 63 1569
[22] Sekiya N, Harada H, Nakagawa Y, Ono S and Ohshima S 2010 Physica C 470 1499
[23] Hong J S 2011 Microstrip Filters for RF/microwave Applications (2nd Edn.) (New York: Wiley) pp. 77-79
[24] Ying Z J, Wei B, Cao B S and Guo X B 2013 IEEE Microw. Wireless Compon. Lett. 23 19
[25] Gao T Q, Wei B, Cao B S, Wang D and Guo X B 2016 Physica C 525 48
[26] Liu H W, Wen P, Wang X M, Wang Y, Guan X H, Xiao X, He Y S, Ma Z W and Wu T T 2015 IEEE Trans. Appl. Supercond. 25 1
[1] Cascade excitation of vortex motion and reentrant superconductivity in flexible Nb thin films
Liping Zhang(张丽萍), Zuyu Xu(徐祖雨), Xiaojie Li(黎晓杰), Xu Zhang(张旭), Mingyang Qin(秦明阳), Ruozhou Zhang(张若舟), Juan Xu(徐娟), Wenxin Cheng(程文欣), Jie Yuan(袁洁), Huabing Wang(王华兵), Alejandro V. Silhanek, Beiyi Zhu(朱北沂), Jun Miao(苗君), and Kui Jin(金魁). Chin. Phys. B, 2023, 32(4): 047302.
[2] Demonstrate chiral spin currents with nontrivial interactions in superconducting quantum circuit
Xiang-Min Yu(喻祥敏), Xiang Deng(邓翔), Jian-Wen Xu(徐建文), Wen Zheng(郑文), Dong Lan(兰栋), Jie Zhao(赵杰), Xinsheng Tan(谭新生), Shao-Xiong Li(李邵雄), and Yang Yu(于扬). Chin. Phys. B, 2023, 32(4): 047104.
[3] Flux pinning evolution in multilayer Pb/Ge/Pb/Ge/Pb superconducting systems
Li-Xin Gao(高礼鑫), Xiao-Ke Zhang(张晓珂), An-Lei Zhang(张安蕾), Qi-Ling Xiao(肖祁陵), Fei Chen(陈飞), and Jun-Yi Ge(葛军饴). Chin. Phys. B, 2023, 32(3): 037402.
[4] A 3-5 μm broadband YBCO high-temperature superconducting photonic crystal
Gang Liu(刘刚), Yuanhang Li(李远航), Baonan Jia(贾宝楠), Yongpan Gao(高永潘), Lihong Han(韩利红), Pengfei Lu(芦鹏飞), and Haizhi Song(宋海智). Chin. Phys. B, 2023, 32(3): 034213.
[5] Fast population transfer with a superconducting qutrit via non-Hermitian shortcut to adiabaticity
Xin-Ping Dong(董新平), Zhi-Bo Feng(冯志波), Xiao-Jing Lu(路晓静), Ming Li(李明), and Zheng-Yin Zhao(赵正印). Chin. Phys. B, 2023, 32(3): 034201.
[6] Realization of the iSWAP-like gate among the superconducting qutrits
Peng Xu(许鹏), Ran Zhang(张然), and Sheng-Mei Zhao(赵生妹). Chin. Phys. B, 2023, 32(2): 020306.
[7] Chiral symmetry protected topological nodal superconducting phase and Majorana Fermi arc
Mei-Ling Lu(卢美玲), Yao Wang(王瑶), He-Zhi Zhang(张鹤之), Hao-Lin Chen(陈昊林), Tian-Yuan Cui(崔天元), and Xi Luo(罗熙). Chin. Phys. B, 2023, 32(2): 027301.
[8] Variational quantum simulation of thermal statistical states on a superconducting quantum processer
Xue-Yi Guo(郭学仪), Shang-Shu Li(李尚书), Xiao Xiao(效骁), Zhong-Cheng Xiang(相忠诚), Zi-Yong Ge(葛自勇), He-Kang Li(李贺康), Peng-Tao Song(宋鹏涛), Yi Peng(彭益), Zhan Wang(王战), Kai Xu(许凯), Pan Zhang(张潘), Lei Wang(王磊), Dong-Ning Zheng(郑东宁), and Heng Fan(范桁). Chin. Phys. B, 2023, 32(1): 010307.
[9] Finite superconducting square wire-network based on two-dimensional crystalline Mo2C
Zhen Liu(刘震), Zi-Xuan Yang(杨子萱), Chuan Xu(徐川), Jia-Ji Zhao(赵嘉佶), Lu-Junyu Wang(王陆君瑜), Yun-Qi Fu(富云齐), Xue-Lei Liang(梁学磊), Hui-Ming Cheng(成会明), Wen-Cai Ren(任文才), Xiao-Song Wu(吴孝松), and Ning Kang(康宁). Chin. Phys. B, 2022, 31(9): 097404.
[10] Hard-core Hall tube in superconducting circuits
Xin Guan(关欣), Gang Chen(陈刚), Jing Pan(潘婧), and Zhi-Guo Gui(桂志国). Chin. Phys. B, 2022, 31(8): 080302.
[11] Characterization of topological phase of superlattices in superconducting circuits
Jianfei Chen(陈健菲), Chaohua Wu(吴超华), Jingtao Fan(樊景涛), and Gang Chen(陈刚). Chin. Phys. B, 2022, 31(8): 088501.
[12] Photon number resolvability of multi-pixel superconducting nanowire single photon detectors using a single flux quantum circuit
Hou-Rong Zhou(周后荣), Kun-Jie Cheng(程昆杰), Jie Ren(任洁), Li-Xing You(尤立星),Li-Liang Ying(应利良), Xiao-Yan Yang(杨晓燕), Hao Li(李浩), and Zhen Wang(王镇). Chin. Phys. B, 2022, 31(5): 057401.
[13] Pressure-induced phase transitions in the ZrXY (X= Si, Ge, Sn;Y= S, Se, Te) family compounds
Qun Chen(陈群), Juefei Wu(吴珏霏), Tong Chen(陈统), Xiaomeng Wang(王晓梦), Chi Ding(丁弛), Tianheng Huang(黄天衡), Qing Lu(鲁清), and Jian Sun(孙建). Chin. Phys. B, 2022, 31(5): 056201.
[14] Measuring Loschmidt echo via Floquet engineering in superconducting circuits
Shou-Kuan Zhao(赵寿宽), Zi-Yong Ge(葛自勇), Zhong-Cheng Xiang(相忠诚), Guang-Ming Xue(薛光明), Hai-Sheng Yan(严海生), Zi-Ting Wang(王子婷), Zhan Wang(王战), Hui-Kai Xu(徐晖凯), Fei-Fan Su(宿非凡), Zhao-Hua Yang(杨钊华), He Zhang(张贺), Yu-Ran Zhang(张煜然), Xue-Yi Guo(郭学仪), Kai Xu(许凯), Ye Tian(田野), Hai-Feng Yu(于海峰), Dong-Ning Zheng(郑东宁), Heng Fan(范桁), and Shi-Ping Zhao(赵士平). Chin. Phys. B, 2022, 31(3): 030307.
[15] Electronic properties and interfacial coupling in Pb islands on single-crystalline graphene
Jing-Peng Song(宋靖鹏) and Ang Li(李昂). Chin. Phys. B, 2022, 31(3): 037401.
No Suggested Reading articles found!