CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Superconductivity in self-flux-synthesized single crystalline R2Pt3Ge5(R = La, Ce, Pr) |
Q Sheng(盛琪)1, J Zhang(张建)1, K Huang(黄百畅)1, Z Ding(丁兆峰)1, X Peng(彭小冉)1, C Tan(谭程)1, L Shu(殳蕾)1,2 |
1 State Key Laboratory of Surface Physics, Department of Physics, Fudan University, Shanghai 200433, China;
2 Collaborative Innovation Center of Advanced Microstructures, Nanjing 210093, China |
|
|
Abstract In order to study the basic superconductivity properties of Pr2Pt3Ge5, we synthesized the single crystalline samples by the Pt-Ge self-flux method. R2Pt3Ge5 (R = La, Ce) were also grown for a systematic study. Zero-resistivity was observed in both the La- and Pr-based samples below the reported superconducting transition temperatures. However, magnetic susceptibility measurements showed low superconductivity volume fractions in both La2Pt3Ge5 and Pr2Pt3Ge5 (less than 2%). Ce2Pt3Ge5 did not show any signature of superconductivity. From the specific heat measurements, we did not observe a superconducting transition peak in Pr2Pt3Ge5, suggesting that it is not a bulk superconductor. The magnetic susceptibility and heat capacity measurements revealed two antiferromagnetic (AFM) orders in Pr2Pt3Ge5 at TN1 = 4.2 K and TN2=3.5 K, as well as a single AFM transition at TN = 3.8 K in Ce2Pt3Ge5.
|
Received: 28 November 2016
Revised: 16 February 2017
Accepted manuscript online:
|
PACS:
|
74.25.Ha
|
(Magnetic properties including vortex structures and related phenomena)
|
|
75.50.Ee
|
(Antiferromagnetics)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11204041) and STCSM of China (Grant No. 15XD1500200). |
Corresponding Authors:
L Shu
E-mail: leishu@fudan.edu.cn
|
Cite this article:
Q Sheng(盛琪), J Zhang(张建), K Huang(黄百畅), Z Ding(丁兆峰), X Peng(彭小冉), C Tan(谭程), L Shu(殳蕾) Superconductivity in self-flux-synthesized single crystalline R2Pt3Ge5(R = La, Ce, Pr) 2017 Chin. Phys. B 26 057401
|
[1] |
Hossain Z, Ohmoto H, Umeo K, Iga F, Suzuki T, Takabatake T, Takamoto N and Kindo K 1999 Phys. Rev. B 60 10383
|
[2] |
Singh Y, Ramakrishnan S, Hossain Z and Geibel C 2002 Phys. Rev. B 66 014415
|
[3] |
Ramakrishnan S, Patil N G, Aravind D C and Marathe V R 2001 Phys. Rev. B 64 064514
|
[4] |
Schilling A, Cantoni M, Guo J and Ott H R 1993 Nature 363 56
|
[5] |
Wang W, Liu Y, Yang J, Du H, Ning W, Ling L, Tong W, Qu Z, Yang Z, Tian M and Zhang Y 2016 Chin. Phys. Lett. 33 057401
|
[6] |
Sung N H, Roh C J, Kim K S and Cho B K 2012 Phys. Rev. B 86 224507
|
[7] |
Vining C B, Shelton R N, Braun H F and Pelizzon M 1983 Phys. Rev. B 27 2800
|
[8] |
Nakashima M, Kohara H, Thamizhavel A, Matsuda T D, Haga Y, Hedo M, Uwatoko Y, Settai R and Onuki Y 2005 J. Phys.:Condens. Matter 17 4539
|
[9] |
Chen Y, Weng Z, Michael S, Lu X and Yuan H. 2016 Chin. Phys. B 25 077401
|
[10] |
Mazzone D G, Sibille R, Gavilano J L, Bartkowiak M, Mansson M, Frontzek M, Zaharko O, Schefer J and Kenzelmann M 2015 arXiv:1508.02649
|
[11] |
White B D, Thompson J D and Maple M B 2015 Physica C 514 246
|
[12] |
Schlabitz W, Baumann J, Pollit B, Rauchschwalbe U, Mayer H M, Ahlheim U and Bredl C D 1986 Physik B 62 171
|
[13] |
Maple M B, Frederick N A, Ho P C, Yuhasz W M and Yanagisawa T 2002 Phys. Rev. B 65 100506
|
[14] |
Maple M B, Henkie Z, Yuhasz W M, Ho P C, Yanagisawa T, Sayles T A, Butch N P, Jeffries J R and Pietraszko A 2003 Physica B 310 182
|
[15] |
Gumeniuk R, Schnelle W, Rosner H, Nicklas M, Leithejasper A and Grin Y 2008 Phys. Rev. Lett. 100 017002
|
[16] |
Gumeniuk R, Borrmann H, Ormeci A, Rosner H, Schnelle W, Nicklas M, Grin Y and Leithe-Jasper A 2010 Z. Kristallogr. 225 531
|
[17] |
Zhang J L, Chen Y, Jiao L, Gumeniuk R, Nicklas M, Chen Y H, Yang L, Fu B H, Schnelle W, Rosner H, Leithe-Jasper A, Grin Y, Steglich F and Yuan H Q 2013 Phys. Rev. B 87 064502
|
[18] |
Gumeniuk R, Kvashnina K O, Schnelle W, Nicklas M, Borrmann H, Rosner H, Skourski Y, Tsirlin A A, Leithe-Jasper A and Grin Y 2011 J. Phys.: Condens. Matter 23 465601
|
[19] |
Venkateshwarlu D, Samatham S S, Gangrade Mohan and Ganesan V 2014 J. Phys.: Conf. Ser. 534 012040
|
[20] |
Larson A C and Von Dreele R B GSAS
|
[21] |
Toby B H 2002 J. Appl. Crystallogr 34 210
|
[22] |
Becker B, Ramakrishnan S, Groten D, Sllow S, Mattheus C C, Nieuwenhuys G J and Mydosh J A 1997 Physica B 230 253
|
[23] |
Feyerherm R, Becker B, Collins M F, Mydosh J, Nieuwenhuys G J and Ramakrishnan S 1997 Physica B 241 643
|
[24] |
Sangeetha N S, Thamizhavel A, Tomy C V, Basu S, Ramakrishnan S and Pal D 2011 Phys. Rev. B 84 064430
|
[25] |
Anand V K, Hossain Z and Geibel C 2008 Phys. Rev. B 77 184407
|
[26] |
Kim S H, Ran S, Mun E D, Hodovanets H, Tanatar M A, Prozorov R, Budako S L and Canfield P C 2015 Philos. Mag. 95 804
|
[27] |
Chen D Y, Yu J, Ruan B B, Guo Q, Zhang L, Mu Q G, Wang X C, Pan B J, Chen G F and Ren Z A 2016 Chin. Phys. Lett. 33 67402
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|