|
|
Modes splitting in graphene-based double-barrier waveguides |
Si-Pu You(有四普), Ying He(何英), Yan-Fang Yang(杨艳芳), Hui-Fang Zhang(张惠芳) |
Department of Physics, College of Sciences, Shanghai University, Shanghai 200444, China |
|
|
Abstract The graphene-based double-barrier waveguides induced by electric field have been investigated. The guided modes can only exist in the case of Klein tunneling, and the fundamental mode is absent. The guided modes in the single-barrier waveguide split into symmetric and antisymmetric modes with different incident angles in the double-barrier waveguide. The phase difference between electron states and hole states is also discussed. The phase difference for the two splitting modes is close to each other and increases with the order of guided modes. These phenomena can be helpful for the potential applications in graphene-based optoelectronic devices.
|
Received: 28 June 2016
Revised: 17 November 2016
Accepted manuscript online:
|
PACS:
|
03.65.Pm
|
(Relativistic wave equations)
|
|
05.60.Gg
|
(Quantum transport)
|
|
94.05.Pt
|
(Wave/wave, wave/particle interactions)
|
|
41.75.Fr
|
(Electron and positron beams)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11204170 and 61108010) and the Shanghai Municipal Commission of Science and Technology, China (Grant No. 16ZR1411600). |
Corresponding Authors:
Ying He
E-mail: heying@staff.shu.edu.cn
|
Cite this article:
Si-Pu You(有四普), Ying He(何英), Yan-Fang Yang(杨艳芳), Hui-Fang Zhang(张惠芳) Modes splitting in graphene-based double-barrier waveguides 2017 Chin. Phys. B 26 030301
|
[1] |
Zhang L, Fu X L, Lei M, Chen J J, Yang J Z, Peng Z J and Tang W H 2014 Chin. Phys. B 23 555
|
[2] |
Zhou P and He D W 2016 Chin. Phys. B 25 770
|
[3] |
Tian H Y 2015 Chin. Phys. B 24 477
|
[4] |
Huard B, Sulpizio J A, Stander N, Todd K, Yang B and Goldhaber-Gordon D 2007 Phys. Rev. Lett. 98 236803
|
[5] |
Williams J R, Dicarlo L and Marcus C M 2007 Science 317 638
|
[6] |
Ozyilmaz B, Jarillo-Herrero P, Efetov D, Abanin D A, Levitov L S and Kim P 2007 Phys. Rev. Lett. 99 166804
|
[7] |
Castro Neto A H, Guinea F, Peres N M R, Novoselov K S and Geim A K 2009 Rev. Mod. Phys. 81 109
|
[8] |
Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V and Firsov A A 2005 Nature 438 197
|
[9] |
Zhang Y, Tan Y W, Stormer H L and Kim P 2005 Nature 438 201
|
[10] |
Purewal M S, Zhang Y and Kim P 2006 Phys. Status Solidi B 243 3418
|
[11] |
Wang X, Cheng Z, Xu K, Tsang H K and Xu J B 2013 Nat. Photonics 7 888
|
[12] |
Cheianov V V, Fal'ko V and Altshuler B L 2007 Science 315 1252
|
[13] |
Beenakker C W J, Sepkhanov R A, Akhmerov A R and Tworzydlo J 2009 Phys. Rev. Lett. 102 146804
|
[14] |
Gusynin V P and Sharapov S G 2005 Phys. Rev. Lett. 95 146801
|
[15] |
Sharma M and Ghosh S 2011 J. Phys.-Condens. Matter 23 055501
|
[16] |
Novoselov K S, McCann E, Morozov S V, Fal'ko V I, Katsnelson M I, Zeitler U, Jiang D, Schedin F and Geim A K 2006 Nat. Phys. 2 177
|
[17] |
Zou J and Jin G 2011 Appl. Phys. Lett. 98 122106
|
[18] |
Katsnelson M I, Novoselov K S and Geim A K 2006 Nat. Phys. 2 620
|
[19] |
Croxall A F, Das Gupta K, Nicoll C A, Thangaraj M, Beere H E, Farrer I, Ritchie D A and Pepper M 2008 Phys. Rev. Lett. 101 246801
|
[20] |
Deng X Q, Sun L and Li C X 2016 Acta Phys. Sin. 65 068503 (in Chinese)
|
[21] |
Lu Y X and Ma N 2016 Acta Phys. Sin. 65 027502 (in Chinese)
|
[22] |
Hartmann R R, Robinson N J and Portnoi M E 2010 Phys. Rev. B 81 245431
|
[23] |
Myoung N, Ihm G and Lee S J 2011 Phys. Rev. B 83 113407
|
[24] |
He Y, Xu Y, Yang Y and Huang W 2014 Appl. Phys. A 115 895
|
[25] |
Zhang F M, He Y and Chen X 2009 Appl. Phys. Lett. 94 212105
|
[26] |
Shen M, Ruan L X and Chen X 2010 Opt. Express 18 12779
|
[27] |
Huang W, He Y, Yang Y and Li C 2012 J. Appl. Phys. 111 053712
|
[28] |
He Y, Ding M, Yang Y and Zhang H 2015 Superlattices Microstruct. 85 761
|
[29] |
Xu Y, He Y and Yang Y 2014 Appl. Phys. A 115 721
|
[30] |
Yao B, Wu Y, Wang Z, Cheng Y, Rao Y, Gong Y, Chen Y and Li Y 2013 Opt. Express 21 29818
|
[31] |
Williams J R, Low T, Lundstrom M S and Marcus C M 2011 Nat. Nanotechnol. 6 222
|
[32] |
Hanson G W 2008 J. Appl. Phys. 104 084314
|
[33] |
Gao W, Shu J, Qiu C and Xu Q 2012 ACS Nano 6 7806
|
[34] |
Wu Z 2011 Appl. Phys. Lett. 98 082117
|
[35] |
He Y, Huang W, Yang Y and Li C 2011 Appl. Phys. A 106 41
|
[36] |
Peng P, Zhang P, Liu J K, Cao Z Z and Li G Q 2012 Commun. Theor. Phys. 58 765
|
[37] |
Song Y, Wu H C and Guo Y 2012 Appl. Phys. Lett. 100 253116
|
[38] |
Zhu R and Guo Y 2007 Appl. Phys. Lett. 91 252113
|
[39] |
Biswas R, Mukhopadhyay S and Sinha C 2010 Physica E 42 1781
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|