Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(1): 017203    DOI: 10.1088/1674-1056/26/1/017203
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Spin-valley Hall conductivity of doped ferromagnetic silicene under strain

Bahram Shirzadi1, Mohsen Yarmohammadi2
1. Department of Physics, Razi University, Kermanshah, Iran;
2. Young Researchers and Elite Club, Kermanshah Branch, Islamic Azad University, Kermanshah, Iran
Abstract  

The spin-valley Hall conductivity (SHC-VHC) of two-dimensional material ferromagnetic graphene's silicon analog, silicene, is investigated in the presence of strain within the Kubo formalism in the context of the Kane-Mele Hamiltonian. The Dirac cone approximation has been used to investigate the dynamics of carriers under the strain along the armchair (AC) direction. In particular, we study the effect of external static electric field on these conductivities under the strain. In the presence of the strain, the carriers have a larger effective mass and the transport decreases. Our findings show that SHC changes with respect to the direction of the applied electric field symmetrically while VHC increases independently. Furthermore, the reflection symmetry of the structure has been broken with the electric field and a phase transition occurs to topological insulator for strained ferromagnetic silicene. A critical strain is found in the presence of the electric field around 45%. SHC (VHC) decreases (increases) for strains smaller than this value symmetrically while it increases (decreases) for strains larger than one.

Keywords:  ferromagnetic silicene      Kubo formalism      strain      spin-valley conductivity  
Received:  08 September 2016      Revised:  28 September 2016      Accepted manuscript online: 
PACS:  72.25.Dc (Spin polarized transport in semiconductors)  
  77.80.bn (Strain and interface effects)  
  77.80.bn (Strain and interface effects)  
  77.80.B- (Phase transitions and Curie point)  
Corresponding Authors:  Mohsen Yarmohammadi     E-mail:  m.yarmohammadi69@gmail.com

Cite this article: 

Bahram Shirzadi, Mohsen Yarmohammadi Spin-valley Hall conductivity of doped ferromagnetic silicene under strain 2017 Chin. Phys. B 26 017203

[1] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666
[2] Mak K F, Lee C, Hone J, Shan J and Heinz T F 2010 Phys. Rev. Lett. 105 136805
[3] Castro Neto A H, Guinea F, Peres N M R, Novoselov K S and Geim A K 2009 Rev. Mod. Phys. 81 109
[4] Peres N M R 2010 Rev. Mod. Phys. 82 2673
[5] Pacile D, Meyer J C, Girit C O and Zettl A 2008 Appl. Phys. Lett. 92 133107
[6] Novoselov K S, Jiang D, Schedin F, Booth T J, Khotkevich V V, Morozov S V and Geim A K 2005 Proc. Natl. Acad. Sci. USA 102 10451
[7] Yarmohammadi M 2016 J. Electron. Mater. 45 4958
[8] Semenoff G W 1984 Phys. Rev. Lett. 53 2449
[9] Katsnelson M I, Novoselov K S and Geim A K 2006 Nat. Phys. 2 620
[10] Yarmohammadi M and Zareyan M 2016 Chin. Phys. B 25 068105
[11] Lin Y, Jenkins K A, Valdes-Garcia A, Small J P, Farmer D B and Avouris P 2009 Nano Lett. 9 422
[12] Kedzierski J, Hsu P, Healey P, Wyatt P W, Keast C L, Sprinkle M, Berger C and Heer WA de 2008 IEEE Trans. Electron. Devices 55 2078
[13] Lalmi B, Oughaddou H, Enriquez H, Kara A, Vizzini S, Ealet B and Aufray B 2010 Appl. Phys. Lett. 97 223109
[14] Padova P E, Quaresima C, Ottaviani C, Sheverdyaeva P M, Moras P, Carbone C, Topwal D, Olivieri B, Kara A, Oughaddou H, Aufray B and Lay G L 2010 Appl. Phys. Lett. 96 261905
[15] Aufray B, Vizzini A, Oughaddou H, Lndri C, Ealet B and Lay G L 2010 Appl. Phys. Lett. 96 183102
[16] Vogt P, Padova P De, Quaresima C, Frantzeskakis J A E, Asensio M C, Resta A, Ealet B and Lay G L 2012 Phys. Rev. Lett. 108 155501
[17] Drummond N D, Z'olyomi V and Fal'ko V I 2012 Phys. Rev. B 85 075423
[18] Ni Z, Liu Q, Tang K, Zheng J, Zhou J, Qin R, Gao Z, Yu D and Lu J 2012 Nano Lett. 12 113
[19] Liu C C, Feng W and Yao Y 2011 Phys. Rev. Lett. 107 076802
[20] Drummond N D, Z'olyomi V and Fal'ko VI 2012 Phys. Rev. B 85 075423
[21] Ezawa M 2012 New J. Phys. 14 033003
[22] Ezawa M 2012 Phys. Rev. Lett. 109 055502
[23] An X T, Zhang Y Y, Liu J J and Li S S 2012 New J. Phys. 14 083039
[24] Tahir M and Schwingenschlogl U 2013 Sci. Rep. 3 1075
[25] Ezawa M 2013 Phys. Rev. Lett. 110 026603
[26] Tsai W F, Huang C Y, Chang T R, Lin H, Jeng H T and Bansil A 2013 Nat. Commun. 4 1500
[27] Tabert C J and Nicol E J 2013 Phys. Rev. Lett. 110 197402
[28] Pan H, Li Z, Liu C C, Zhu G, Qiao Z and Yao Y 2014 Phys. Rev. Lett. 112 106802
[29] Yarmohammadi M 2016 AIP Advances 6 085008
[30] Gui G, Li J and Zhong J 2008 Phys. Rev. B 78 075435
[31] Pereira V M, Castro Neto A H and Peres N M R 2009 Phys. Rev. B 80 045401
[32] Choi S M, Jhi S H and Son Y W 2010 Phys. Rev. B 81 081407R
[33] Farjam M and Rafii-Tabar H 2009 Phys. Rev. B 80 167401
[34] Liu G, Wu M S, Ouyang C Y and Xu B 2012 Europhys. Lett. 99 17010
[35] Wang Y and Ding Y 2013 Solid State Commun. 155 6
[36] Kaloni T P, Cheng Y C and Schwingenschlogl U 2013 J. Appl. Phys. 113 104305
[37] Mohan B, Kumar A and Ahluwalia P K 2014 Physica E 61 40
[38] Zhao H 2012 Phys. Lett. A 376 3546
[39] Pesin D and MacDonald A H 2012 Nat. Mater. 11 409
[40] Rycerz A, Tworzydlo J and Beenakker J C W 2007 Nat. Phys. 3 172
[41] Grujic M M, Tadic M Z and Peeters F M 2014 Phys. Rev. Lett. 113 046601
[42] Moldovan D, Ramezani Masir M, Covaci L and Peeters F M 2012 Phys. Rev. B 86 115431
[43] Song Y, Zhai F and Guo Y 2013 Appl. Phys. Lett. 103 183111
[44] Zhang L and Wang J 2014 Chin. Phys. B 23 087202
[45] Tian H Y and Wang J 2012 Chin. Phys. B 21 017203
[46] Sasaki K I and Saito R 2008 Prog. Theor. Phys. Supp. 176 253
[47] Pereira V M and Castro Neto A H 2009 Phys. Rev. Lett. 103 046801
[48] Fujita T, Jalil M B A and Tan S G 2010 Appl. Phys. Lett. 97 043508
[49] Chaves A, Covaci L, Rakhimov K Y, Farias G A and Peeters F M 2010 Phys. Rev. B 82 205430
[50] Niu Z P 2012 J. Appl. Phys. 111 103712
[51] Liu C C, Feng W and Yao Y 2011 Phys. Rev. Lett. 107 076802
[52] Tahir M, Manchon A, Sabeeh K and Schwingenschlogl U 2013 Appl. Phys. Lett. 102 162412
[53] Stille L, Tabert C J and Nicol E J 2012 Phys. Rev. B 86 195405
[54] Tabert C J and Nicol E J 2013 Phys. Rev. B 87 235426
[55] An X T, Zhang Y Y, Liu J J and Li S S 2013 Appl. Phys. Lett. 102 043113
[56] Dyrda A and Barnas J 2012 Phys. Status Solidi 6 340
[57] Yokoyama T 2013 Phys. Rev. B 87 241409
[58] Haugen H, Huertas-Hernando D and Brataas A 2008 Phys. Rev. B 77 115406
[59] Qiao Z, Yang S A, Feng W, Tse W K, Ding J, Yao Y, Wang J and Niu Q 2010 Phys. Rev. B 82 161414
[60] Pereira V M, Castro Neto A H and Peres N M R 2009 Phys. Rev. B 80 045401
[61] Wang B, Wu J, Gu X, Yin H, Wei Y, Yang R and Dresselhaus M 2014 Appl. Phys. Lett. 104 081902
[62] Pellegrino F M D, Angilella G G N and Pucci R 2012 Phys. Rev. B 85 195409
[63] Sattari F 2016 J. Magn. Magn. Mater. 414 19
[64] Vargiamidis V, Vasilopoulos P and Hai G Q 2014 J. Phys. Condens. Matter. 26 345303
[65] Kane C L and Mele E J 2005 Phys. Rev. Lett. 95 226801
[66] Sinitsyn N A, Hill J E, Min H, Sinova J and MacDonald A H 2006 Phys. Rev. Lett. 97 106804
[67] Li Z and Carbotte J P 2012 Phys. Rev. B 86 205425
[68] Rakshit B and Mahadevan P 2010 Phys. Rev. B 82 153407
[69] Qin R, Wang C, Zhu W and Zhang Y 2012 AIP Advances 2 022159
[70] Tabert C J and Nicol E J 2013 Phys. Rev. B 88 085434
[71] Tahir M, Manchon A, Sabeeh K and Schwingenschlogl U 2013 Appl. Phys. Lett. 102 162412
[1] Strain compensated type II superlattices grown by molecular beam epitaxy
Chao Ning(宁超), Tian Yu(于天), Rui-Xuan Sun(孙瑞轩), Shu-Man Liu(刘舒曼), Xiao-Ling Ye(叶小玲), Ning Zhuo(卓宁), Li-Jun Wang(王利军), Jun-Qi Liu(刘俊岐), Jin-Chuan Zhang(张锦川), Shen-Qiang Zhai(翟慎强), and Feng-Qi Liu(刘峰奇). Chin. Phys. B, 2023, 32(4): 046802.
[2] Strain engineering and hydrogen effect for two-dimensional ferroelectricity in monolayer group-IV monochalcogenides MX (M =Sn, Ge; X=Se, Te, S)
Maurice Franck Kenmogne Ndjoko, Bi-Dan Guo(郭必诞), Yin-Hui Peng(彭银辉), and Yu-Jun Zhao(赵宇军). Chin. Phys. B, 2023, 32(3): 036802.
[3] Bismuth doping enhanced tunability of strain-controlled magnetic anisotropy in epitaxial Y3Fe5O12(111) films
Yunpeng Jia(贾云鹏), Zhengguo Liang(梁正国), Haolin Pan(潘昊霖), Qing Wang(王庆), Qiming Lv(吕崎鸣), Yifei Yan(严轶非), Feng Jin(金锋), Dazhi Hou(侯达之), Lingfei Wang(王凌飞), and Wenbin Wu(吴文彬). Chin. Phys. B, 2023, 32(2): 027501.
[4] Theoretical study of M6X2 and M6XX' structure (M = Au, Ag; X,X' = S, Se): Electronic and optical properties, ability of photocatalytic water splitting, and tunable properties under biaxial strain
Jiaqi Li(李嘉琪), Xinlu Cheng(程新路), and Hong Zhang(张红). Chin. Phys. B, 2022, 31(9): 097101.
[5] Growth of high material quality InAs/GaSb type-II superlattice for long-wavelength infrared range by molecular beam epitaxy
Fang-Qi Lin(林芳祁), Nong Li(李农), Wen-Guang Zhou(周文广), Jun-Kai Jiang(蒋俊锴), Fa-Ran Chang(常发冉), Yong Li(李勇), Su-Ning Cui(崔素宁), Wei-Qiang Chen(陈伟强), Dong-Wei Jiang(蒋洞微), Hong-Yue Hao(郝宏玥), Guo-Wei Wang(王国伟), Ying-Qiang Xu(徐应强), and Zhi-Chuan Niu(牛智川). Chin. Phys. B, 2022, 31(9): 098504.
[6] Modulation of Schottky barrier in XSi2N4/graphene (X=Mo and W) heterojunctions by biaxial strain
Qian Liang(梁前), Xiang-Yan Luo(罗祥燕), Yi-Xin Wang(王熠欣), Yong-Chao Liang(梁永超), and Quan Xie(谢泉). Chin. Phys. B, 2022, 31(8): 087101.
[7] First-principles study of a new BP2 two-dimensional material
Zhizheng Gu(顾志政), Shuang Yu(于爽), Zhirong Xu(徐知荣), Qi Wang(王琪), Tianxiang Duan(段天祥), Xinxin Wang(王鑫鑫), Shijie Liu(刘世杰), Hui Wang(王辉), and Hui Du(杜慧). Chin. Phys. B, 2022, 31(8): 086107.
[8] Valley-dependent transport in strain engineering graphene heterojunctions
Fei Wan(万飞), X R Wang(王新茹), L H Liao(廖烈鸿), J Y Zhang(张嘉颜),M N Chen(陈梦南), G H Zhou(周光辉), Z B Siu(萧卓彬), Mansoor B. A. Jalil, and Yuan Li(李源). Chin. Phys. B, 2022, 31(7): 077302.
[9] Effect of strain on charge density wave order in α-U
Liuhua Xie(谢刘桦), Hongkuan Yuan(袁宏宽), and Ruizhi Qiu(邱睿智). Chin. Phys. B, 2022, 31(6): 067103.
[10] Surface chemical disorder and lattice strain of GaN implanted by 3-MeV Fe10+ ions
Jun-Yuan Yang(杨浚源), Zong-Kai Feng(冯棕楷), Ling Jiang(蒋领), Jie Song(宋杰), Xiao-Xun He(何晓珣), Li-Ming Chen(陈黎明), Qing Liao(廖庆), Jiao Wang(王姣), and Bing-Sheng Li(李炳生). Chin. Phys. B, 2022, 31(4): 046103.
[11] Anomalous strain effect in heteroepitaxial SrRuO3 films on (111) SrTiO3 substrates
Zhenzhen Wang(王珍珍), Weiheng Qi(戚炜恒), Jiachang Bi(毕佳畅), Xinyan Li(李欣岩), Yu Chen(陈雨), Fang Yang(杨芳), Yanwei Cao(曹彦伟), Lin Gu(谷林), Qinghua Zhang(张庆华), Huanhua Wang(王焕华), Jiandi Zhang(张坚地), Jiandong Guo(郭建东), and Xiaoran Liu(刘笑然). Chin. Phys. B, 2022, 31(12): 126801.
[12] Accurate theoretical evaluation of strain energy of all-carboatomic ring (cyclo[2n]carbon), boron nitride ring, and cyclic polyacetylene
Tian Lu(卢天), Zeyu Liu(刘泽玉), and Qinxue Chen(陈沁雪). Chin. Phys. B, 2022, 31(12): 126101.
[13] Strain-modulated anisotropic Andreev reflection in a graphene-based superconducting junction
Xingfei Zhou(周兴飞), Ziming Xu (许子铭), Deliang Cao(曹德亮), and Fenghua Qi(戚凤华). Chin. Phys. B, 2022, 31(11): 117403.
[14] Skyrmion transport driven by pure voltage generated strain gradient
Shan Qiu(邱珊), Jia-Hao Liu(刘嘉豪), Ya-Bo Chen(陈亚博), Yun-Ping Zhao(赵云平), Bo Wei(危波), and Liang Fang(方粮). Chin. Phys. B, 2022, 31(11): 117701.
[15] Microcrack localization using a collinear Lamb wave frequency-mixing technique in a thin plate
Ji-Shuo Wang(王积硕), Cai-Bin Xu(许才彬), You-Xuan Zhao(赵友选), Ning Hu(胡宁), and Ming-Xi Deng(邓明晰). Chin. Phys. B, 2022, 31(1): 014301.
No Suggested Reading articles found!