Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(12): 126104    DOI: 10.1088/1674-1056/25/12/126104
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Room temperature direct-bandgap electroluminescence from a horizontal Ge ridge waveguide on Si

Chao He(何超), Zhi Liu(刘智), Bu-Wen Cheng(成步文)
State Key Laboratory on Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
Abstract  

We report a lateral Ge-on-Si ridge waveguide light emitting diode (LED) grown by ultrahigh vacuum chemical vapor deposition (UHV-CVD). Direct-bandgap electroluminescence (EL) of Ge waveguide under continuous current is observed at room temperature. The heat-enhancing luminescence and thermal radiation-induced superlinear increase of edge output optical power are found. The spontaneous emission and thermal radiation based on the generalized Planck radiation law are calculated and fit very well to the experimental results. The Ge waveguides with different lengths are studied and the shorter one shows stronger EL intensity.

Keywords:  Ge/Si      waveguide      electroluminescence      thermal radiation  
Received:  15 June 2016      Revised:  21 August 2016      Accepted manuscript online: 
PACS:  61.72.uf (Ge and Si)  
  42.79.Gn (Optical waveguides and couplers)  
  78.60.Fi (Electroluminescence)  
  44.40.+a (Thermal radiation)  
Fund: 

Project supported by the National Basic Research Program of China (Grant No. 2013CB632103), the National Natural Science Foundation of China (Grant Nos. 61176013 and 61036003), and the Science Fund from Beijing Science and Technology Commission, China (Grant No. Z151100003315019).

Corresponding Authors:  Bu-Wen Cheng     E-mail:  cbw@semi.ac.cn

Cite this article: 

Chao He(何超), Zhi Liu(刘智), Bu-Wen Cheng(成步文) Room temperature direct-bandgap electroluminescence from a horizontal Ge ridge waveguide on Si 2016 Chin. Phys. B 25 126104

[1] Tanabe K, Watanabe K and Arakawa Y 2012 Sci. Rep. 2 349
[2] Wirths S, Geiger R, von den Driesch N, Mussler R, Stoica T, Mantl S, Ikonic Z, Luysberg M, Chiussi S, Hartmann J M, Sigg H, Faist J, Buca D and Grützmacher D 2015 Nat. Photon. 9 88
[3] Chen S, Li W, Wu J, Jiang Q, Tang M, Shutts S, Elliott S N, Sobiesierski A, Seeds A J, Ross I, Smowton P M and Liu H 2016 Nat. Photon. 10 307
[4] Liu J, Sun X, Pan D, Wang X, Kimerling L C, Koch T L and Michel J 2007 Opt. Express 15 11272
[5] Samavati A, Othaman Z, Ghoshal S K and Mustafa M K 2015 Chin. Phys. B 24 028103
[6] Liu J, Cannon D D, Wada K, Ishikawa Y, Danielson D T, Jongthammanurak S, Michel J and Kimerling L C 2004 Phys. Rev. B 70 155309
[7] Sun X, Liu J, Kimerling L C and Michel J 2009 Appl. Phys. Lett. 95 011911
[8] Hu W, Cheng B, Xue C, Xue H, Su S, Bai A, Luo L, Yu Y and Wang Q 2009 Appl. Phys. Lett. 95 092102
[9] Sun X, Liu J, Kimerling L C and Michel J 2009 Opt. Lett. 34 1198
[10] Cheng S L, Lu J, Shambat G, Yu H Y, Saraswat K, Vuckovic J and Nishi Y 2009 Opt. Express 17 10019
[11] Liu J, Sun X, Camacho-Aguilera R, Kimerling L C and Michel J 2010 Opt. Lett. 35 679
[12] Camacho-Aguilera R E, Cai Y, Patel N, Bessette J T, Romagnoli M, Kimerling L C and Michel J 2012 Opt. Express 20 11316
[13] Koerner R, Oehme M, Gollhofer M, Schmid M, Kostecki K, Bechler S, Widmann D, Kasper E and Schulze J 2015 Opt. Express 23 14815
[14] Liu Z, Li Y, He C, Li C, Xue C, Zuo Y, Cheng B and Wang Q 2014 Appl. Phys. Lett. 104 191111
[15] Liu Z, Cheng B W, Li Y M, Li C B, Xue C L and Wang Q M 2013 Chin. Phys. B 22 116804
[16] Sze S M and Ng K K 2006 Physics of semiconductor devices (New York:John Wiley & Sons) p. 98
[17] Boucaud P, Kurdi M E, Sauvage S, de Kersauson M, Ghrib A and Checoury X 2013 Nat. Photon. 7 162
[18] Coldren L A, Corzine S W and Mashanovitch M L 2012 Diode lasers and photonic integrated circuits (New York:John Wiley & Sons) p. 172
[19] Okumura T, Oda K, Kasai J, Sagawa M and Suwa Y 2016 Opt. Express 24 9132
[1] Non-Markovianity of an atom in a semi-infinite rectangular waveguide
Jing Zeng(曾静), Yaju Song(宋亚菊), Jing Lu(卢竞), and Lan Zhou(周兰). Chin. Phys. B, 2023, 32(3): 030305.
[2] Spontaneous emission of a moving atom in a waveguide of rectangular cross section
Jing Zeng(曾静), Jing Lu(卢竞), and Lan Zhou(周兰). Chin. Phys. B, 2023, 32(2): 020302.
[3] Dual-channel fiber-optic surface plasmon resonance sensor with cascaded coaxial dual-waveguide D-type structure and microsphere structure
Ling-Ling Li(李玲玲), Yong Wei(魏勇), Chun-Lan Liu(刘春兰), Zhuo Ren(任卓), Ai Zhou(周爱), Zhi-Hai Liu(刘志海), and Yu Zhang(张羽). Chin. Phys. B, 2023, 32(2): 020702.
[4] High gain and circularly polarized substrate integrated waveguide cavity antenna array based on metasurface
Hao Bai(白昊), Guang-Ming Wang(王光明), and Xiao-Jun Zou(邹晓鋆). Chin. Phys. B, 2023, 32(1): 014101.
[5] Electroluminescence explored internal behavior of carriers in InGaAsP single-junction solar cell
Xue-Fei Li(李雪飞), Wen-Xian Yang(杨文献), Jun-Hua Long(龙军华), Ming Tan(谭明), Shan Jin(金山), Dong-Ying Wu(吴栋颖), Yuan-Yuan Wu(吴渊渊), and Shu-Long Lu(陆书龙). Chin. Phys. B, 2023, 32(1): 017801.
[6] Second harmonic generation from precise diamond blade diced ridge waveguides
Hui Xu(徐慧), Ziqi Li(李子琦), Chi Pang(逄驰), Rang Li(李让), Genglin Li(李庚霖), Sh. Akhmadaliev, Shengqiang Zhou(周生强), Qingming Lu(路庆明), Yuechen Jia(贾曰辰), and Feng Chen(陈峰). Chin. Phys. B, 2022, 31(9): 094209.
[7] Sound-transparent anisotropic media for backscattering-immune wave manipulation
Wei-Wei Kan(阚威威), Qiu-Yu Li(李秋雨), and Lei Pan(潘蕾). Chin. Phys. B, 2022, 31(8): 084302.
[8] Enhancing performance of GaN-based LDs by using GaN/InGaN asymmetric lower waveguide layers
Wen-Jie Wang(王文杰), Ming-Le Liao(廖明乐), Jun Yuan(袁浚), Si-Yuan Luo(罗思源), and Feng Huang(黄锋). Chin. Phys. B, 2022, 31(7): 074206.
[9] A multi-frequency circularly polarized metasurface antenna array based on quarter-mode substrate integrated waveguide for sub-6 applications
Hao Bai(白昊), Guang-Ming Wang(王光明), Xiao-Jun Zou(邹晓鋆), Peng Xie(谢鹏), and Yi-Ping Shi(石一平). Chin. Phys. B, 2022, 31(5): 054102.
[10] Nonreciprocal two-photon transmission and statistics in a chiral waveguide QED system
Lei Wang(王磊), Zhen Yi(伊珍), Li-Hui Sun(孙利辉), and Wen-Ju Gu(谷文举). Chin. Phys. B, 2022, 31(5): 054206.
[11] Creation of multi-frequency terahertz waves by optimized cascaded difference frequency generation
Zhong-Yang Li(李忠洋), Jia Zhao(赵佳), Sheng Yuan(袁胜), Bin-Zhe Jiao(焦彬哲), Pi-Bin Bing(邴丕彬), Hong-Tao Zhang(张红涛), Zhi-Liang Chen(陈治良), Lian Tan(谭联), and Jian-Quan Yao(姚建铨). Chin. Phys. B, 2022, 31(4): 044205.
[12] Independently tunable dual resonant dip refractive index sensor based on metal—insulator—metal waveguide with Q-shaped resonant cavity
Haowen Chen(陈颢文), Yunping Qi(祁云平), Jinghui Ding(丁京徽), Yujiao Yuan(苑玉娇), Zhenting Tian(田振廷), and Xiangxian Wang(王向贤). Chin. Phys. B, 2022, 31(3): 034211.
[13] Mode characteristics of nested eccentric waveguides constructed by two cylindrical nanowires coated with graphene
Ji Liu(刘吉), Lixia Yu(于丽霞), and Wenrui Xue(薛文瑞). Chin. Phys. B, 2022, 31(3): 036803.
[14] Quantum steerability of two qubits mediated by one-dimensional plasmonic waveguides
Ye-Qi Zhang(张业奇), Xiao-Ting Ding(丁潇婷), Jiao Sun(孙娇), and Tian-Hu Wang(王天虎). Chin. Phys. B, 2022, 31(12): 120305.
[15] Ultra-wideband surface plasmonic bandpass filter with extremely wide upper-band rejection
Xue-Wei Zhang(张雪伟), Shao-Bin Liu(刘少斌), Qi-Ming Yu(余奇明), Ling-Ling Wang(王玲玲), Kun Liao(廖昆), and Jian Lou(娄健). Chin. Phys. B, 2022, 31(11): 114101.
No Suggested Reading articles found!