Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(12): 126103    DOI: 10.1088/1674-1056/25/12/126103
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

High-pressure structure and elastic properties of tantalum single crystal: First principles investigation

Jian-Bing Gu(顾建兵)1, Chen-Ju Wang(王臣菊)1, Wang-Xi Zhang(张旺玺)1, Bin Sun(孙斌)1, Guo-Qun Liu(刘国群)1, Dan-Dan Liu(刘丹丹)2, Xiang-Dong Yang(杨向东)3
1. School of Materials and Chemical Engineering, Zhongyuan University of Technology, Zhengzhou 450007, China;
2. College of Science, Zhongyuan University of Technology, Zhengzhou 450007, China;
3. Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065, China
Abstract  

Since knowledge of the structure and elastic properties of Ta at high pressures is critical for addressing the recent controversies regarding the high-pressure stable phase and elastic properties, we perform a systematical study on the high-pressure structure and elastic properties of the cubic Ta by using the first-principles method. Results show that the initial body-centered cubic phase of Ta remains stable even up to 500 GPa and the high-pressure elastic properties are excellently consistent with the available experimental results. Besides, the high-pressure sound velocities of the single- and poly-crystals Ta are also calculated based on the elastic constants, and the predications exhibit good agreement with the existing experimental data.

Keywords:  high-pressure structure      elastic properties      sound velocities      density functional theory  
Received:  12 May 2016      Revised:  03 August 2016      Accepted manuscript online: 
PACS:  61.50.-f (Structure of bulk crystals)  
  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
  43.35.+d (Ultrasonics, quantum acoustics, and physical effects of sound)  
  31.15.E-  
Fund: 

Project supported by the Basic and Frontier Technical Research Project of Henan Province, China (Grant No. 152300410228), the University Innovation Team Project in Henan Province, China (Grant No. 15IRTSTHN004), and the Key Scientific Research Project of Higher Education of Henan Province, China (Grant No. 17A140014).

Corresponding Authors:  Chen-Ju Wang     E-mail:  scu_wcj@163.com

Cite this article: 

Jian-Bing Gu(顾建兵), Chen-Ju Wang(王臣菊), Wang-Xi Zhang(张旺玺), Bin Sun(孙斌), Guo-Qun Liu(刘国群), Dan-Dan Liu(刘丹丹), Xiang-Dong Yang(杨向东) High-pressure structure and elastic properties of tantalum single crystal: First principles investigation 2016 Chin. Phys. B 25 126103

[1] Hsiung L M and Lassila D H 2000 Acta Mater. 48 4851
[2] Hsiung L and Lassila D 1998 Scr. Mater. 39 603
[3] Hsiung L L 2010 J. Phys.:Condens. Matter 22 385702
[4] Dewaele A, Mezouar M, Guignot N and Loubeyre P 2010 Phys. Rev. Lett. 104 255701
[5] Errandonea D, Schwager B, Ditz R, Gessmann C, Boehler R and Ross M 2001 Phys. Rev. B 63 132104
[6] Errandonea D, Somayazulu M, Hausermann D and Mao H K 2003 J. Phys.:Condens. Matter 15 7635
[7] Crynn H and Yoo C 1999 Phys. Rev. B 59 8526
[8] Holmes N C, Moriarty J A, Gathers G and Nellis W J 1989 J. Appl. Phys. 66 2962
[9] Nellis W J, Mitchell A C and Young D A 2003 J. Appl. Phys. 93 304
[10] Mitchell A and Nellis W 1981 J. Appl. Phys. 52 3363
[11] Burakovsky L, Chen S P, Preston D L, Belonoshko A B, Rosengren A, Mikhaylushkin A S, Simak S I and Moriarty J A 2010 Phys. Rev. Lett. 104 255702
[12] Moriarty J A 1994 Phys. Rev. B 49 12431
[13] Moriarty J A, Belak J F, Rudd R E, Soderlind P, Streitz F H and Yang L H 2002 J. Phys.:Condens. Matter 14 2825
[14] Soderlind P and Moriarty J A 1998 Phys. Rev. B 57 10340
[15] Jakse N, Bacq O L and Pasturel A 2004 Phys. Rev. B 70 174203
[16] Crowhurst J C, Zaug J M, Abramson E H, Brown J M and Ahre D W 2003 High Pressure Res. 23 373
[17] Cynn H and Yoo C S 1999 Bull. Am. Phys. Soc. 44 1288
[18] Antonangeli D, Farber D L, Said A H, Benedetti L R, Aracne C M, Landa A, Soderlind P and Klepeis J E 2010 Phys. Rev. B 82 132101
[19] Katahara K, Manghnani M H and Fisher E S 1976 J. Appl. Phys. 47 434
[20] Orlikowski D, Soderlind P and Moriarty J A 2006 Phys. Rev. B 74 054109
[21] Gulseren O and Cohen R E 2002 Phys. Rev. B 65 064103
[22] Koci L, Ma Y, Oganov A R, Souvatzis P and Ahuja R 2008 Phys. Rev. B 77 214101
[23] Bercegeay C and Bernard S 2005 Phys. Rev. B 72 214101
[24] Foata-Prestavoine M, Robert G, Nadal M and Bernard S 2007 Phys. Rev. B 76 104104
[25] Shang S L, Wang Y and Liu Z K 2007 Appl. Phys. Lett. 90 101909
[26] Page Y L and Saxe P 2002 Phys. Rev. B 65 104104
[27] Kresse G and Furthmuller J 1996 Phys. Rev. B 54 11169
[28] Kresse G and Furthmuller J 1996 Comput. Mater. Sci. 6 15
[29] Zhang X D and Jiang W 2016 Chin. Phys. B 25 026301
[30] Wang C J, Gu J B, Kuang X Y and Yang X D 2015 Chin. Phys. B 24 086201
[31] Perdew J P, Burke K and Ernzerhof M 1997 Phys. Rev. Lett. 78 1396
[32] Zhang W X, Liu Y X, Tian H, Xu J W and Feng L 2015 Chin. Phys. B 24 076104
[33] Lu Q, Zhang H Y, Cheng Y, Chen X R and Ji G F 2016 Chin. Phys. B 25 026401
[34] Zahra N and Aminollah V 2016 Chin. Phys. B 25 037101
[35] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
[36] Birch E 1978 J. Geophys. Res. 83 1257
[37] Wang C J, Xiang S K, Gu J B, Kuang X Y, Yu Y, Yan X Z and Chen H Y 2014 J. Appl. Phys. 116 104904
[38] Hill R 1952 Proc. Phys. Soc. A 65 349
[39] Musgrave M J P 1970 Crystal Acoustics (San Francisco:Holden-Day)
[40] Featherston F H and Neighbours J R 1963 Phys. Rev. 130 1324
[41] Manghnani M H, Katahara K and Fisher E 1974 Phys. Rev. B 9 1421
[42] Dewaele A, Loubeyre P and Mezouar M 2004 Phys. Rev. B 69 092106
[43] Zeng Z Y, Hu C E, Chen X R, Zhang X L, Cai L C and Jing F Q 2011 Phys. Chem. Chem. Phys. 13 1669
[44] Yao Y S and Klug D D 2013 Phys. Rev. B 88 054102
[45] Crowhurst J C, Zaug J M, Abramson E H, Brown J M and Ahre D W 2003 High Pressure Res. 23 373
[46] Pugh S F 1954 Philos. Mag. 45 823
[47] Frantsevich I N, Voronov F F and Bokuta S A 1983 Elastic Constants and Elastic Moduli of Metals and Insulators Handbook (I. N. Frantsevich, Naukova Dumka, Kiev)
[48] Zener C 1948 Elasticity and Anelasticity of Metals (Chicago:University of Chicago Press)
[49] Chung D H and Buessem W R 1967 J. Appl. Phys. 38 5
[50] Antonangeli D, Krisch M, Fiquet G, Farber D L, Aracne C M, Badro J, Occelli F and Requardt H 2004 Phys. Rev. Lett. 93 215505
[51] Antonangeli D, Krisch M, Farber D L, Ruddle D G and Fiquet G 2008 Phys. Rev. Lett. 100 085501
[1] Predicting novel atomic structure of the lowest-energy FenP13-n(n=0-13) clusters: A new parameter for characterizing chemical stability
Yuanqi Jiang(蒋元祺), Ping Peng(彭平). Chin. Phys. B, 2023, 32(4): 047102.
[2] Ferroelectricity induced by the absorption of water molecules on double helix SnIP
Dan Liu(刘聃), Ran Wei(魏冉), Lin Han(韩琳), Chen Zhu(朱琛), and Shuai Dong(董帅). Chin. Phys. B, 2023, 32(3): 037701.
[3] A theoretical study of fragmentation dynamics of water dimer by proton impact
Zhi-Ping Wang(王志萍), Xue-Fen Xu(许雪芬), Feng-Shou Zhang(张丰收), and Xu Wang(王旭). Chin. Phys. B, 2023, 32(3): 033401.
[4] Plasmonic hybridization properties in polyenes octatetraene molecules based on theoretical computation
Nan Gao(高楠), Guodong Zhu(朱国栋), Yingzhou Huang(黄映洲), and Yurui Fang(方蔚瑞). Chin. Phys. B, 2023, 32(3): 037102.
[5] Effects of π-conjugation-substitution on ESIPT process for oxazoline-substituted hydroxyfluorenes
Di Wang(汪迪), Qiao Zhou(周悄), Qiang Wei(魏强), and Peng Song(宋朋). Chin. Phys. B, 2023, 32(2): 028201.
[6] High-order harmonic generation of the cyclo[18]carbon molecule irradiated by circularly polarized laser pulse
Shu-Shan Zhou(周书山), Yu-Jun Yang(杨玉军), Yang Yang(杨扬), Ming-Yue Suo(索明月), Dong-Yuan Li(李东垣), Yue Qiao(乔月), Hai-Ying Yuan(袁海颖), Wen-Di Lan(蓝文迪), and Mu-Hong Hu(胡木宏). Chin. Phys. B, 2023, 32(1): 013201.
[7] First-principles study of a new BP2 two-dimensional material
Zhizheng Gu(顾志政), Shuang Yu(于爽), Zhirong Xu(徐知荣), Qi Wang(王琪), Tianxiang Duan(段天祥), Xinxin Wang(王鑫鑫), Shijie Liu(刘世杰), Hui Wang(王辉), and Hui Du(杜慧). Chin. Phys. B, 2022, 31(8): 086107.
[8] Adaptive semi-empirical model for non-contact atomic force microscopy
Xi Chen(陈曦), Jun-Kai Tong(童君开), and Zhi-Xin Hu(胡智鑫). Chin. Phys. B, 2022, 31(8): 088202.
[9] Collision site effect on the radiation dynamics of cytosine induced by proton
Xu Wang(王旭), Zhi-Ping Wang(王志萍), Feng-Shou Zhang(张丰收), and Chao-Yi Qian (钱超义). Chin. Phys. B, 2022, 31(6): 063401.
[10] First principles investigation on Li or Sn codoped hexagonal tungsten bronzes as the near-infrared shielding material
Bo-Shen Zhou(周博深), Hao-Ran Gao(高浩然), Yu-Chen Liu(刘雨辰), Zi-Mu Li(李子木),Yang-Yang Huang(黄阳阳), Fu-Chun Liu(刘福春), and Xiao-Chun Wang(王晓春). Chin. Phys. B, 2022, 31(5): 057804.
[11] Laser-induced fluorescence experimental spectroscopy and theoretical calculations of uranium monoxide
Xi-Lin Bai(白西林), Xue-Dong Zhang(张雪东), Fu-Qiang Zhang(张富强), and Timothy C Steimle. Chin. Phys. B, 2022, 31(5): 053301.
[12] Insights into the adsorption of water and oxygen on the cubic CsPbBr3 surfaces: A first-principles study
Xin Zhang(张鑫), Ruge Quhe(屈贺如歌), and Ming Lei(雷鸣). Chin. Phys. B, 2022, 31(4): 046401.
[13] Tunable electronic properties of GaS-SnS2 heterostructure by strain and electric field
Da-Hua Ren(任达华), Qiang Li(李强), Kai Qian(钱楷), and Xing-Yi Tan(谭兴毅). Chin. Phys. B, 2022, 31(4): 047102.
[14] Influence of intramolecular hydrogen bond formation sites on fluorescence mechanism
Hong-Bin Zhan(战鸿彬), Heng-Wei Zhang(张恒炜), Jun-Jie Jiang(江俊杰), Yi Wang(王一), Xu Fei(费旭), and Jing Tian(田晶). Chin. Phys. B, 2022, 31(3): 038201.
[15] Advances and challenges in DFT-based energy materials design
Jun Kang(康俊), Xie Zhang(张燮), and Su-Huai Wei(魏苏淮). Chin. Phys. B, 2022, 31(10): 107105.
No Suggested Reading articles found!