Enhanced microwave absorption performance of MOF-derived hollow Zn-Co/C anchored on reduced graphene oxide
Yue Wang(王玥), Dawei He(何大伟)†, and Yongsheng Wang(王永生)
Key Laboratory of Luminescence and Optical Information, Ministry of Education, Institute of Optoelectronic Technology, Beijing Jiaotong University, Beijing 100044, China
Abstract Composite materials assembled by metal/carbon nanoparticles and 2D layered flakes can provide abundant interfaces, which are beneficial for high-performance microwave absorbers. Herein, Zn-Co/C/RGO composites, composed of Zn-Co metal-organic framework-derived Zn-Co/C nanoparticles and reduced graphene oxide (RGO), were obtained through a facile method. The multilayer structure was due to the introduction of hollow Zn-Co/C nanoparticles in the RGO sheets. Zn-Co/C nanoparticles provided abundant polarization and dipole centers on the RGO surface, which enhanced the microwave absorption abilities. Different concentrations of RGO were introduced to optimize impedance matching. The minimum reflection loss (RL) of Zn-Co/C/RGO with a thickness of 1.5 mm reached -32.56 dB with the bandwidth corresponding to RL at -10 dB, which can reach 3.92 GHz, while a minimum RL of -47.15 dB at 11.2 GHz was also obtained at a thickness of 2.0 mm. The electromagnetic data demonstrate that Zn-Co/C/RGO presented excellent absorption performance and has potential for application in the microwave absorption field.
Received: 08 December 2020
Revised: 23 December 2020
Accepted manuscript online: 30 December 2020
PACS:
78.30.Jw
(Organic compounds, polymers)
Fund: Project supported by the National Key R&D Program of China (Grant No. 2016YFA0202302), the National Natural Science Foundation of China (Grant Nos. 61527817, 61875236, 61905010, and 61975007), and Beijing Natural Science Foundation, China (Grant No. Z190006).
Corresponding Authors:
Dawei He
E-mail: dwhe@bjtu.edu.cn
Cite this article:
Yue Wang(王玥), Dawei He(何大伟), and Yongsheng Wang(王永生) Enhanced microwave absorption performance of MOF-derived hollow Zn-Co/C anchored on reduced graphene oxide 2021 Chin. Phys. B 30 067804
[1] Green M and Chen X 2019 Journal of Materiomics5 503 [2] Liu L, Wang L, Li Q, Yu X, Shi X, Ding J, You W, Yang L, Zhang Y and Che R 2019 ChemNanoMat5 558 [3] Zhao Z, Xu S, Du Z, Jiang C and Huang X 2019 ACS Sustainable Chem. Eng.7 7183 [4] Liu H, Li L, Wang X, Cui G and Lv X 2020 Materials13 4527 [5] Sun Q, Cai Y, Sun L, Ye W, Long X, Xu S, Ji Y and Wang R 2020 Journal of Materials Science56 1492 [6] Uddin W, Rehman S U, Aslam M A, Rehman S U, Wu M and Zhu M 2020 Materials Research Bulletin130 110943 [7] Wang H, Shi P, Rui M, Zhu A, Liu R and Zhang C 2020 Progress in Organic Coatings139 105476 [8] Wang S, Jiao Q, Liu X, Xu Y, Shi Q, Yue S, Zhao Y, Liu H, Feng C and Shi D 2019 ACS Sustainable Chem. Eng.7 7004 [9] Liu J, Che R, Chen H, Zhang F, Xia F, Wu Q and Wang M 2012 Small8 1214 [10] Liu Q, Cao Q, Bi H, Liang C, Yuan K, She W, Yang Y and Che R 2016 Adv. Mater.28 486 [11] You W, Bi H, She W, Zhang Y and Che R 2017 Small13 1602779 [12] Wang X, Huang L, Li J, Du Y, Wang Q, He X and Yuan Y 2020 J. Appl. Phys.127 205102 [13] Ma J, Li W, Fan Y, Yang J, Yang Q, Wang J, Luo W, Zhou W, Nomura N, Wang L and Jiang W 2019 ACS Appl. Mater. Interfaces11 46386 [14] Zhou E, Xi J, Guo Y, Liu Y, Xu Z, Peng L, Gao W, Ying J, Chen Z and Gao C 2018 Carbon133 316 [15] Zhao H, Yeow Seow J Z, Cheng Y, Xu Z J and Ji G 2020 Ceramics International46 15447 [16] Yan L, Zhang M, Zhao S, Sun T, Zhang B, Cao M and Qin Y 2020 Chemical Engineering Journal382 122860 [17] Che R C, Peng L M, Duan X F, Chen Q and Liang X L 2004 Adv. Mater.16 401 [18] Che R C, Zhi C Y, Liang C Y and Zhou X G 2006 Appl. Phys. Lett.88 033105 [19] Yan F, Guo D, Zhang S, Li C, Zhu C, Zhang X and Chen Y 2018 Nanoscale10 2697 [20] Fu C, He D, Wang Y and Zhao X 2019 Synthetic Metals257 116187 [21] Bai Y W, Shi G, Gao J and Shi F N 2020 Journal of Solid State Chemistry288 121401 [22] Sun H, Che R, You X, Jiang Y, Yang Z, Deng J, Qiu L and Peng H 2014 Adv. Mater.26 8120 [23] Wu Z, Pei K, Xing L, Yu X, You W and Che R 2019 Advanced Functional Materials29 1901448 [24] Zong H, Yang H, Dong J, Ma L, Lin Y, Qiu Y and Wen B 2020 J. Mater. Sci: Mater. Electron.31 18590 [25] Wu Z, Huang T, Li T and Li L 2019 Langmuir35 3688 [26] Kang Y, Yuan B, Ma T, Chu Z Y and Zhang Z J 2018 J. Inorg. Mater.33 1259 [27] Yu W Q, Qiu Y C, Xiao H J, Yang H T and Wang G M 2019 Chin. Phys. B28 108103 [28] Wanga X, Lua Y, Zhua T, Changa S and Wang W 2020 Chemical Engineering Journal388 124317 [29] Wang Y, Suo B, Shi Y, Yuan H, Zhu C and Chen Y 2020 ACS Appl. Mater. Inter.12 40692 [30] Zhang X, Yan F, Zhang S, Yuan H, Zhu C, Zhang X and Chen Y 2018 Appl. Mater. Inter.10 24920 [31] Zhang X, Xu J, Yuan H, Zhang S, Ouyang Q, Zhu C, Zhang X and Chen Y 2019 Appl. Mater. Inter.11 39100 [32] Li Q, Zhao Y, Li X, Wang L, Li X, Zhang J and Che R 2020 Small16 2003905 [33] Huo J, Wang L and Yu H 2009 Journal of Materials Science44 3917 [34] Ruan W, Mu C, Wang B, Nie A, Zhang C, Du X, Xiang J, Wen F and Liu Z 2018 Nanotechnology29 405703 [35] Wang L, Wen B, Yang H, Qiu Y and He N 2020 Compos Part A: Appl. S.135 135958 [36] Zhang Y, Zhang H B, Wu X, Deng Z, Zhou E and Yu Z Z 2019 ACS Applied Nano Materials2 2325 [37] Liu D, Du Y, Wang F, Wang Y, Cui L, Zhao H and Han X 2020 Carbon157 478 [38] Liu W, Shao Q, Ji G, Liang X, Cheng Y, Quan B and Du Y 2017 Chemical Engineering Journal313 734 [39] Gupta S, Chang C, Anbalagan A K, Lee C H and Tai N H 2020 Composites Science and Technology188 107994 [40] Hu Q, Qi X, Cai H, Xie R, Long L, Bai Z, Jiang Y, Qin S, Zhong W and Du Y 2017 Sci. Rep.7 11213 [41] Li X, Wang L, Li X, Zhang J, Wang M and Che R 2021 Carbon172 15 [42] Wang Y, Di X, Gao X and Wu X 2020 Nanotechnology31 395710 [43] Wang Y, Di X, Wu X and Li X 2020 J. Alloys Compd.20 156215 [44] Xu J, Zhang X, Yuan H, Zhang S, Zhu C, Zhang X and Chen Y 2020 Carbon159 357 [45] Zhang X, Xu J, Liu X, Zhang S, Yuan H, Zhu C, Zhang X and Chen Y 2019 Carbon155 233 [46] Zhang X, Zhang X, Wang D, Yuan H, Zhang S, Zhu C, Zhang X and Chen Y 2019 Journal of Materials Chemistry C7 11868 [47] Zhang X, Zhang X, Yuan H, Li K, Ouyang Q, Zhub C, Zhanga S and Chen Y 2020 Chemical Engineering Journal383 123208 [48] Hummers W S Jr. and Offema R E 1958 J. Am. Chem. Soc.80 1339 [49] Guan B Y, Kushima A, Yu L, Li S, Li J and Lou X W D 2017 Adv. Mater.29 17 [50] Atamny E, Baiker A, Muhr H J and Nesper R 1995 Fresenius J. Anal. Chem.353 433 [51] Fan X, Zhang A, Li M, Xu H, Xue J, Ye F and Cheng L 2020 Journal of Materials Science: Materials in Electronics31 11774 [52] Sun Y, Jia H, Liu J, Yu H and Jiang X 2020 Journal of Materials Science: Materials in Electronics31 11700 [53] Miao P, Cao J, Kong J, Li J, Wang T and Chen K J 2020 Nanoscale12 13311 [54] Peng C, Zhang Y and Zhang B 2020 J. Alloys Compd.826 154203 [55] Lu Y, Wang Y, Li H, Lin Y, Jiang Z, Xie Z, Kuang Q and Zheng L 2015 ACS Appl. Mater. Interfaces7 13604 [56] Ding D, Wang Y, Li X, Qiang R, Xu P, Chu W, Han X and Du Y 2017 Carbon111 722 [57] Ma T, Cui Y, Sha Y, Liu L, Ge J, Meng F and Wang F 2020 Synthetic Metals265 116407
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.