Exchange effect and magneto-plasmon mode dispersion in an anisotropic two-dimensional electronic system
Xiaoguang Wu(吴晓光)1,2
1 State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China; 2 University of Chinese Academy of Sciences, Beijing 100049, China
Abstract The exchange effect and the magneto-plasmon mode dispersion are studied theoretically for an anisotropic two-dimensional electronic system in the presence of a uniform perpendicular magnetic field. Employing an effective low-energy model with anisotropic effective masses, which is relevant for a monolayer of phosphorus, the exchange effect due to the electron-electron interaction is treated within the self-consistent Hartree-Fock approximation. The magneto-plasmon mode dispersion is obtained by solving a Bethe-Salpeter equation for the electron density-density correlation function within the ladder diagram approximation. It is found that the exchange effect is reduced in the anisotropic system in comparison with the isotropic one. The magneto-plasmon mode dispersion shows a clear dependence on the direction of the wave vector.
Xiaoguang Wu(吴晓光) Exchange effect and magneto-plasmon mode dispersion in an anisotropic two-dimensional electronic system 2016 Chin. Phys. B 25 117801
[1]
Ling X, Wang H, Huang S, Xia F and Dresselhaus M S 2015 PNAS 112 4523
[2]
Butler S Z, Hollen S M, Cao L Y, et al. 2013 ACS Nano 7 2898
[3]
Liu Z, Liu F and Wu Y S 2014 Chin. Phys. B 23 077308
[4]
Suess R J, Jadidi M M, Murphy T E and Mittendorff M 2015 Appl. Phys. Lett. 107 081103
[5]
Yuan H, Liu X, Afshinmanesh F, Li W, Xu G, Sun J, Lian B, Curto A G, Ye G, Hikita Y, Shen Z, Zhang S C, Chen X, Brongersma M, Hwang H Y and Cui Y 2015 Nat. Nanotechnol. 10 707
[6]
Li L, Yang F, Ye G J, Zhang Z, Zhu Z, LouW, Zhou X, Li L, Watanabe K, Taniguchi T, Chang K, Wang Y, Chen X H and Zhang Y 2016 Nat. Nanotechnol. 11 593
[7]
Gillgren N, Wickramaratne D, Shi Y, Espiritu T, Yang J, Hu J, Wei J, Liu X, Mao Z, Watanabe K, Taniguchi T, Bockrath M, Barlas Y, Lake R K and Lau C N 2015 2$D Mater 2 011001
[8]
Rudenko A N and Katsnelson M I 2014 Phys. Rev. B 89 201408(R)
[9]
Li P and Appelbaum I 2014 Phys. Rev. B 90 115439
[10]
Pereira J J M and Katsnelson M I 2015 Phys. Rev. B 92 075437
[11]
Low T, Rodin A S, Carvalho A, Jiang Y, Wang H, Xia F and Castro N A H 2014 Phys. Rev. B 90 075434
[12]
Tahir M, Vasilopoulos P and Peeters F M 2015 Phys. Rev. B 92 045420
[13]
Zhou X Y, Zhang R, Sun J P, Zou Y L, Zhang D, Lou W K, Cheng F, Zhou G H, Zhai F and Chang K 2015 Sci. Rep. 5 12295
[14]
Jin F, Roldan R, Katsnelson M I and Yuan S 2015 Phys. Rev. B 92 115440
[15]
Pyatkovskiy P K and Chakraborty T 2016 Phys. Rev. B 93 085145
[16]
Low T, Roldan R, Wang H, Xia F, Avouris P, Moreno L M and Guinea F 2014 Phys. Rev. Lett. 113 106802
[17]
Nemilentsau A, Low T and Hanson G 2016 Phys. Rev. Lett. 116 066804
[18]
Fei R, Tran V and Yang L 2015 Phys. Rev. B 91 195319
[19]
Ostahie B and Aldea A 2016 Phys. Rev. B 93 075408
[20]
Ghazaryan A and Chakraborty T 2015 Phys. Rev. B 92 165409
[21]
Balram Ajit C and Jain J K 2016 Phys. Rev. B 93 075121
[22]
Mogulkoc A, Mogulkoc Y, Rudenko A N and Katsnelson M I 2016 Phys. Rev. B 93 085417
[23]
Yuan S, van Veen E, Katsnelson M I and Roldán R 2016 Phys. Rev. B 93 245433
[24]
Mueed M A, Kamburov D, Hasdemir S, Pfeiffer L N, West K W, Baldwin K W and Shayegan M 2016 Phys. Rev. B 93 195436
[25]
Batke E, Heitmann D and Tu C W 1986 Phys. Rev. B 34 6951
[26]
Merzbacher E 1970 Quantum Mechanics (New York:Wiley)
[27]
Kohn W 1961 Phys. Rev. 123 1242
[28]
Fetter A L and Walecka J D 1971 Quantum Theory of Many-Particle Systems (New York:McGraw-Hill)
[29]
Mahan G D 1990 Many-Particle Physics (New York:Plenum)
[30]
Kallin C and Halperin B I 1984 Phys. Rev. B 30 5655
[31]
MacDonald A H 1985 J. Phys. C 18 1003
[32]
Antoniou D and MacDonald A H 1992 Phys. Rev. B 46 15225
[33]
Wu X G, Xu L J and Zheng H Z 2006 Phys. Rev. B 74 165309
The 50 nm-thick yttrium iron garnet films with perpendicular magnetic anisotropy Shuyao Chen(陈姝瑶), Yunfei Xie(谢云飞), Yucong Yang(杨玉聪), Dong Gao(高栋), Donghua Liu(刘冬华), Lin Qin(秦林), Wei Yan(严巍), Bi Tan(谭碧), Qiuli Chen(陈秋丽), Tao Gong(龚涛), En Li(李恩), Lei Bi(毕磊), Tao Liu(刘涛), and Longjiang Deng(邓龙江). Chin. Phys. B, 2022, 31(4): 048503.
A new direct band gap silicon allotrope o-Si32 Xin-Chao Yang(杨鑫超), Qun Wei(魏群), Mei-Guang Zhang(张美光), Ming-Wei Hu(胡明玮), Lin-Qian Li(李林茜), and Xuan-Min Zhu(朱轩民). Chin. Phys. B, 2022, 31(2): 026104.
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.