Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(11): 117802    DOI: 10.1088/1674-1056/25/11/117802
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Full-profile fitting of emission spectrum to determine transition intensity parameters of Yb3+: GdTaO4

Qingli Zhang(张庆礼)1, Guihua Sun(孙贵花)1, Kaijie Ning(宁凯杰)1, Chaoshu Shi(施朝淑)2, Wenpeng Liu(刘文鹏)1, Dunlu Sun(孙敦陆)1, Shaotang Yin(殷绍唐)1
1 The Key Laboratory of Photonic Devices and Materials, Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei 230031, China;
2 Physics Department of the Science and Technology of China, Hefei 230026, China
Abstract  

The Judd-Ofelt theoretic transition intensity parameters Atpk of luminescence of rare-earth ions in solids are important for the quantitative analysis of luminescence. It is very difficult to determine them with emission or absorption spectra for a long time. A “full profile fitting” method to obtain Atpk in solids with its emission spectrum is proposed, in which the contribution of a radiative transition to the emission spectrum is expressed as the product of transition probability, line profile function, instrument measurement constant and transition center frequency or wavelength, and the whole experimental emission spectrum is the sum of all transitions. In this way, the emission spectrum is expressed as a function with the independent variables intensity parameters Atpk, full width at half maximum (FWHM) of profile functions, instrument measurement constant, wavelength, and the Huang-Rhys factor S if the lattice vibronic peaks in the emission spectrum should be considered. The ratios of the experimental to the calculated energy lifetimes are incorporated into the fitting function to remove the arbitrariness during fitting Atpk and other parameters. Employing this method obviates measurement of the absolute emission spectrum intensity. It also eliminates dependence upon the number of emission transition peaks. Every experiment point in emission spectra, which usually have at least hundreds of data points, is the function with variables Atpk and other parameters, so it is usually viable to determine Atpk and other parameters using a large number of experimental values. We applied this method to determine twenty-five Atpk of Yb3+ in GdTaO4. The calculated and experiment energy lifetimes, experimental and calculated emission spectrum are very consistent, indicating that it is viable to obtain the transition intensity parameters of rare-earth ions in solids by a full profile fitting to the ions' emission spectrum. The calculated emission cross sections of Yb3+:GdTaO4 also indicate that the F-L formula gives larger values in the wavelength range with reabsorption.

Keywords:  transition intensity      rare-earth ions      Yb3+:GdTaO4      luminescence  
Received:  22 June 2016      Revised:  28 July 2016      Accepted manuscript online: 
PACS:  78.55.-m (Photoluminescence, properties and materials)  
  78.60.Lc (Optically stimulated luminescence)  
  75.10.Dg (Crystal-field theory and spin Hamiltonians)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 51172236, 51502292, 51272254, 51102239, 61205173, and 61405206).

Corresponding Authors:  Qingli Zhang     E-mail:  zql@aiofm.ac.cn

Cite this article: 

Qingli Zhang(张庆礼), Guihua Sun(孙贵花), Kaijie Ning(宁凯杰), Chaoshu Shi(施朝淑), Wenpeng Liu(刘文鹏), Dunlu Sun(孙敦陆), Shaotang Yin(殷绍唐) Full-profile fitting of emission spectrum to determine transition intensity parameters of Yb3+: GdTaO4 2016 Chin. Phys. B 25 117802

[1] Judd B R 1962 Phys. Rev. 127 750
[2] Ofelt G S 1962 J. Chem. Phys. 37 511
[3] Reid M F and Richardson F S 1984 J. Chem. Phys. 88 3579
[4] Newman D J and Balasubramanian G 1975 J. Phys. C:Solid State Phys. 8 37
[5] Reid M F and Richardson F S 1983 J. Chem. Phys. 79 5735
[6] Reid M F, Dallara J J and Richardson F S 1983 J. Chem. Phys. 79 5743
[7] Newman D J and Ng B 2000 Crystal Field Handbook (New York:Cambdrige Univeristy Press) p. 208
[8] Judd B R 1963 Operator Techniques and Atomic Spectroscopy(New York, San Francisco, Toronto, London:McGraw-Hill Book Company) p. 42, p. 72
[9] Theo H 2005 International Tables for Crystallography, Volume A:Space-Group Symmetry (5th edn.) (Dordrecht:Springer) p. 195
[10] Huang K 1981 Adv. Phys. 1 31
[11] Zhang Q L, Wang X M, Yin S T and Jiang H H 2008 Eng. Sci. 10 35
[12] Zhang Q L, Ning K J, Ding L H, Liu W P, Sun D L, Jiang H H and Yin S T 2013 Chin. Phys. B 22 067105
[13] Krupke W F 1966 Phys. Rev. 145 325
[14] Dorenbos P 2000 J. Luminun. 91 155
[15] Goldner P, Schaudel B and Prassas M 2002 Phys. Rev. B 65 054103
[16] Krupke W F and Gruber J B 1965 Phys. Rev. B 139 A2008
[17] Ma Z 2005 Handbook of Modern Applied Mathematics, Computational and Numerical Analysis (Beijing:Tsinghua University press) p. 554
[18] Liu W 2009 Preparation, Single Crystal Growth and Luminescence Properties of New Type Scintillators with High Density (Hefei:Ph D Dissertation of Chinese Academy of Sciences) p. 92
[19] Patel F D, Honea E C, Speth J, Payne S A, Hutcheson R and Equall R 2001 IEEE J. Quantum Electron. 37 135
[20] Orazio S 1998 Principles of Lasers (4th edn.) (New York and London:Plenum Press) p. 339
[1] Thermally enhanced photoluminescence and temperature sensing properties of Sc2W3O12:Eu3+ phosphors
Yu-De Niu(牛毓德), Yu-Zhen Wang(汪玉珍), Kai-Ming Zhu(朱凯明), Wang-Gui Ye(叶王贵), Zhe Feng(冯喆), Hui Liu(柳挥), Xin Yi(易鑫), Yi-Huan Wang(王怡欢), and Xuan-Yi Yuan(袁轩一). Chin. Phys. B, 2023, 32(2): 028703.
[2] Growth behaviors and emission properties of Co-deposited MAPbI3 ultrathin films on MoS2
Siwen You(游思雯), Ziyi Shao(邵子依), Xiao Guo(郭晓), Junjie Jiang(蒋俊杰), Jinxin Liu(刘金鑫), Kai Wang(王凯), Mingjun Li(李明君), Fangping Ouyang(欧阳方平), Chuyun Deng(邓楚芸), Fei Song(宋飞), Jiatao Sun(孙家涛), and Han Huang(黄寒). Chin. Phys. B, 2023, 32(1): 017901.
[3] Electroluminescence explored internal behavior of carriers in InGaAsP single-junction solar cell
Xue-Fei Li(李雪飞), Wen-Xian Yang(杨文献), Jun-Hua Long(龙军华), Ming Tan(谭明), Shan Jin(金山), Dong-Ying Wu(吴栋颖), Yuan-Yuan Wu(吴渊渊), and Shu-Long Lu(陆书龙). Chin. Phys. B, 2023, 32(1): 017801.
[4] Enhanced photoluminescence of monolayer MoS2 on stepped gold structure
Yu-Chun Liu(刘玉春), Xin Tan(谭欣), Tian-Ci Shen(沈天赐), and Fu-Xing Gu(谷付星). Chin. Phys. B, 2022, 31(8): 087803.
[5] Up/down-conversion luminescence of monoclinic Gd2O3:Er3+ nanoparticles prepared by laser ablation in liquid
Hua-Wei Deng(邓华威) and Di-Hu Chen(陈弟虎). Chin. Phys. B, 2022, 31(7): 078701.
[6] Exploration of structural, optical, and photoluminescent properties of (1-x)NiCo2O4/xPbS nanocomposites for optoelectronic applications
Zein K Heiba, Mohamed Bakr Mohamed, Noura M Farag, and Ali Badawi. Chin. Phys. B, 2022, 31(6): 067801.
[7] Simulating the resonance-mediated (1+2)-three-photon absorption enhancement in Pr3+ ions by a rectangle phase modulation
Wenjing Cheng(程文静), Yuan Li(李媛), Hongzhen Qiao(乔红贞), Meng Wang(王蒙), Shaoshuo Ma(马绍朔), Fangjie Shu(舒方杰), Chuanqi Xie(解传奇), and Guo Liang(梁果). Chin. Phys. B, 2022, 31(6): 063201.
[8] Exciton luminescence and many-body effect of monolayer WS2 at room temperature
Jian-Min Wu(吴建民), Li-Hui Li(黎立辉), Wei-Hao Zheng(郑玮豪), Bi-Yuan Zheng(郑弼元), Zhe-Yuan Xu(徐哲元), Xue-Hong Zhang(张学红), Chen-Guang Zhu(朱晨光), Kun Wu(吴琨), Chi Zhang(张弛), Ying Jiang(蒋英),Xiao-Li Zhu(朱小莉), and Xiu-Juan Zhuang(庄秀娟). Chin. Phys. B, 2022, 31(5): 057803.
[9] Effect of different catalysts and growth temperature on the photoluminescence properties of zinc silicate nanostructures grown via vapor-liquid-solid method
Ghfoor Muhammad, Imran Murtaza, Rehan Abid, and Naeem Ahmad. Chin. Phys. B, 2022, 31(5): 057801.
[10] Doublet luminescence due to coexistence of excitons and electron-hole plasmas in optically excited CH3NH3PbBr3 single crystal
Jie Wang(王杰), Guang-Zhe Ma(马广哲), Lu Cao(曹露), Min Gao(高敏), and Dong Shi(石东). Chin. Phys. B, 2022, 31(4): 047104.
[11] Stability and luminescence properties of CsPbBr3/CdSe/Al core-shell quantum dots
Heng Yao(姚恒), Anjiang Lu(陆安江), Zhongchen Bai(白忠臣), Jinguo Jiang(蒋劲国), and Shuijie Qin(秦水介). Chin. Phys. B, 2022, 31(4): 046106.
[12] Applications and functions of rare-earth ions in perovskite solar cells
Limin Cang(苍利民), Zongyao Qian(钱宗耀), Jinpei Wang(王金培), Libao Chen(陈利豹), Zhigang Wan(万志刚), Ke Yang(杨柯), Hui Zhang(张辉), and Yonghua Chen(陈永华). Chin. Phys. B, 2022, 31(3): 038402.
[13] Enhancing the photo-luminescence stability of CH3NH3PbI3 film with ionic liquids
Weifeng Ma(马威峰), Chunjie Ding(丁春杰), Nasrullah Wazir, Xianshuang Wang(王宪双), Denan Kong(孔德男), An Li(李安), Bingsuo Zou(邹炳锁), and Ruibin Liu(刘瑞斌). Chin. Phys. B, 2022, 31(3): 037802.
[14] Computational simulation of ionization processes in single-bubble and multi-bubble sonoluminescence
Jin-Fu Liang(梁金福), De-Feng Xiong(熊德凤), Yu An(安宇), and Wei-Zhong Chen(陈伟中). Chin. Phys. B, 2022, 31(11): 117802.
[15] Laser-modified luminescence for optical data storage
Xin Wei(魏鑫), Weiwei Zhao(赵伟玮), Ting Zheng(郑婷), Junpeng Lü(吕俊鹏), Xueyong Yuan(袁学勇), and Zhenhua Ni(倪振华). Chin. Phys. B, 2022, 31(11): 117901.
No Suggested Reading articles found!