Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(11): 117701    DOI: 10.1088/1674-1056/25/11/117701
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Threshold resistance switching in silicon-rich SiOx thin films

Da Chen(陈达), Shi-Hua Huang(黄仕华)
Physics Department, Zhejiang Normal University, Zhejiang 321004, China
Abstract  Si-rich SiOx and amorphous Si clusters embedded in SiOx films were prepared by the radio-frequency magnetron cosputtering method and high-temperature annealing treatment. The threshold resistance switching behavior was achieved from the memory mode by continuous bias sweeping in all films, which was caused by the formation of clusters due to the local overheating under a large electric field. Besides, the I-V characteristics of the threshold switching showed a dependence on the annealing temperature and the SiOx thickness. In particular, formation and rupture of conduction paths is considered to be the switching mechanism for the 39 nm-SiOx film, while for the 78 nm-SiOx film, adjusting of the Schottky barrier height between insulator and semiconductor is more reasonable. This study demonstrates the importance of investigation of both switching modes in resistance random access memory.
Keywords:  threshold resistance switching      silicon-rich SiOx thin film      annealing  
Received:  21 April 2016      Revised:  05 June 2016      Accepted manuscript online: 
PACS:  77.80.Fm (Switching phenomena)  
  61.72.Bb (Theories and models of crystal defects)  
  81.40.Ef (Cold working, work hardening; annealing, post-deformation annealing, quenching, tempering recovery, and crystallization)  
Fund: Project supported by the Open Project Program of Surface Physics Laboratory (National Key Laboratory) of Fudan University, China (Grant No. KF2015 02), the Open Project Program of National Laboratory for Infrared Physics, Chinese Academy of Sciences (Grant No. M201503), Zhejiang Provincial Science and Technology Key Innovation Team, China (Grant No. 2011R50012), and Zhejiang Provincial Key Laboratory, China (Grant No. 2013E10022).
Corresponding Authors:  Shi-Hua Huang     E-mail:  huangshihua@zjnu.cn

Cite this article: 

Da Chen(陈达), Shi-Hua Huang(黄仕华) Threshold resistance switching in silicon-rich SiOx thin films 2016 Chin. Phys. B 25 117701

[1] Kim S N, Austin T, Blaauw D, Mudge T, Flautner K, Hu S J, Irwin J M, Kandemir M and Narayanan V 2003 Computer 36 68
[2] Lee Y H, Chen S P, Wu Y T, Chen S Y, Wang C C, Tzeng J P, Lin H C, Chen F, Lien H C and Tsai J M 2008 IEEE International Electron Devices Meeting, December 15-17, 2008, San Francisco, America, p. 1
[3] Chang H S, Lee S J, Chae C S, Lee B S, Liu C, Kahng B, Kim W D and Noh W T 2009 Phys. Rev. Lett. 102 026801
[4] Seo S, Lee J M, Seo H D, Jeoung J E, Suh S D, Joung S Y, Yoo K I, Hwang R I, Kim H S, Byun S I, Kim S J, Choi S J and Park H B 2004 Appl. Phys. Lett. 85 5655
[5] Dearnaley G, Stoneham M A and Morgan V D 1970 Rep. Prog. Phys. 33 1129
[6] Inoue H I, Yasuda S, Akinaga H and Takagi H 2008 Phys. Rev. B 77 035105
[7] Chen D and Huang H S 2015 J. MicroNanolith. MEMS MOEMS 14 024501
[8] Chang H S, Chae C S, Lee B S, Liu C, Noh W T, Lee S J, Kahng B, Jang H J, Kim Y M, Kim W D and Jung U C 2008 Appl. Phys. Lett. 92 183507
[9] Cai Y Y, Sheng C C and Liang H C 2013 Appl. Phys. A 111 1065
[10] Sun T H, Liu Q, Li F C, Long B S, Lv B H, Bi C, Huo L Z, Li L and Liu M 2014 Adv. Funct. Mater. 24 5679
[11] Pang Y H, Li F T, Lin N W, Wang Z Y, Gao Y X and Wu T 2012 Sci. Rep. 2 442
[12] Matsushita T, Aoki T, Otsu T, Yamoto H, Hayashi H, Okayama M and Kawana Y 1976 IEEE Trans. Electron. Devices 23 826
[13] Matsushita T, Aoki T, Otsu T, Yamoto H, Hayashi H, Okayama M and Kawana Y 1976 Jpn. J. Appl. Phys. Suppl. 15 35
[14] Dori L, Acovic A, DiMaria J D and Hsu H C 1993 IEEE Electron Device Lett. 14 285
[15] Wang F Y, Qian Y X, Chen J K, Fang H Z, Li W and Xu J 2013 Appl. Phys. Lett. 102 042103
[16] Chen T Y, Fowler B, Wang Z Y, Xue F, Zhou F, Chang F Y and Lee C J 2012 J. Solid State Sci. Technol. 1 148
[17] Yao J, Sun Z Z, Zhong L, Natelson D and Tour M J 2010 Nano Lett. 10 4105
[18] Huang R, Zhang J L, Gao J D, Pan Y, Qin Q S, Tang P, Cai M Y and Wang Y Y 2011 Appl. Phys. A 102 927
[19] Hamasaki M, Adachi T, Wakayama S and Kikuchi M 1978 J. Appl. Phys. 49 3987
[20] Nesheva D, Nedev N, Levi Z, Brüggemann R, Manolov E, Kirilov K and Meier C 2008 Semicond. Sci. Technol 23 045015
[21] Nesbit A L 1985 Appl. Phys. Lett. 46 38
[22] Bae J, Hwang I, Jeong Y, Kang O S, Hong S, Son J, Choi J, Kim J, Park J, Seong J M, Jia Q and Park H B 2012 Appl. Phys. Lett. 100 062902
[23] Zhu Z W, Tamagawa T, Gibson M, Furukawa T and Ma P T 2002 IEEE Electron Device Lett. 23 649
[24] Huang J J, Kuo W C, Chang C W and Hou H T 2010 Appl. Phys. Lett. 96 262901
[25] Kanzawa Y, Hayashi S and Yamamoto K 1996 J. Phys.:Condens. Mat-ter 8 4823
[26] Furukawa K, Liu Y, Nakashima H, Gao D, Uchino K and Muraoka K 1998 Appl. Phys. Lett. 72 725
[27] Yi X L, Heitmann J, Scholz R and Zacharias M 2002 Appl. Phys. Lett. 81 4248
[28] Yang J J, Strachan P J, Xia Q, Ohlberg D A A, Kuekes J P, Kelley D R, Stickle F W, Stewart R D, Gilberto R M and Williams S R 2010 Adv. Mater. 22 4034
[29] Jiang R, Du X H, Han Z Y and Sun W D 2015 Appl. Phys. Lett. 106 173509
[30] Tomita T, Utsunomiya H, Sakura T, Kamakura Y and Taniguchi K 1999 IEEE Trans. Electron Devices 46 159
[31] Houssa M, Nigam T, Mertens W P and Heyns M M 1998 J. Appl. Phys. 84 4351
[1] Phosphorus diffusion and activation in fluorine co-implanted germanium after excimer laser annealing
Chen Wang(王尘), Wei-Hang Fan(范伟航), Yi-Hong Xu(许怡红), Yu-Chao Zhang(张宇超), Hui-Chen Fan(范慧晨), Cheng Li(李成), and Song-Yan Cheng(陈松岩). Chin. Phys. B, 2022, 31(9): 098503.
[2] Introducing voids around the interlayer of AlN by high temperature annealing
Jianwei Ben(贲建伟), Jiangliu Luo(罗江流), Zhichen Lin(林之晨), Xiaojuan Sun(孙晓娟), Xinke Liu(刘新科), and Xiaohua Li(黎晓华). Chin. Phys. B, 2022, 31(7): 076104.
[3] Construction and mechanism analysis on nanoscale thermal cloak by in-situ annealing silicon carbide film
Jian Zhang(张健), Hao-Chun Zhang(张昊春), Zi-Liang Huang(黄子亮), Wen-Bo Sun(孙文博), and Yi-Yi Li(李依依). Chin. Phys. B, 2022, 31(1): 014402.
[4] Protection of isolated and active regions in AlGaN/GaN HEMTs using selective laser annealing
Mingchen Hou(侯明辰), Gang Xie(谢刚), Qing Guo(郭清), and Kuang Sheng(盛况). Chin. Phys. B, 2021, 30(9): 097302.
[5] In-situ TEM observation of the evolution of helium bubbles in Mo during He+ irradiation and post-irradiation annealing
Yi-Peng Li(李奕鹏), Guang Ran(冉广), Xin-Yi Liu(刘歆翌), Xi Qiu(邱玺), Qing Han(韩晴), Wen-Jie Li(李文杰), and Yi-Jia Guo(郭熠佳). Chin. Phys. B, 2021, 30(8): 086109.
[6] Impact of O2 post oxidation annealing on the reliability of SiC/SiO2 MOS capacitors
Peng Liu(刘鹏), Ji-Long Hao(郝继龙), Sheng-Kai Wang(王盛凯), Nan-Nan You(尤楠楠), Qin-Yu Hu(胡钦宇), Qian Zhang(张倩), Yun Bai(白云), and Xin-Yu Liu(刘新宇). Chin. Phys. B, 2021, 30(7): 077303.
[7] Fabrication and characterization of Al-Mn superconducting films for applications in TES bolometers
Qing Yu(余晴), Yi-Fei Zhang(张翼飞), Chang-Hao Zhao(赵昌昊), Kai-Yong He(何楷泳), Ru-Tian Huang(黄汝田), Yong-Cheng He(何永成), Xin-Yu Wu(吴歆宇), Jian-She Liu(刘建设), and Wei Chen(陈炜). Chin. Phys. B, 2021, 30(7): 077402.
[8] Effects of post-annealing on crystalline and transport properties of Bi2Te3 thin films
Qi-Xun Guo(郭奇勋), Zhong-Xu Ren(任中旭), Yi-Ya Huang(黄意雅), Zhi-Chao Zheng(郑志超), Xue-Min Wang(王学敏), Wei He(何为), Zhen-Dong Zhu(朱振东), and Jiao Teng(滕蛟). Chin. Phys. B, 2021, 30(6): 067307.
[9] Understanding the synergistic effect of mixed solvent annealing on perovskite film formation
Kun Qian(钱昆), Yu Li(李渝), Jingnan Song(宋静楠), Jazib Ali, Ming Zhang(张明), Lei Zhu(朱磊), Hong Ding(丁虹), Junzhe Zhan(詹俊哲), and Wei Feng(冯威). Chin. Phys. B, 2021, 30(6): 068103.
[10] Quantum annealing for semi-supervised learning
Yu-Lin Zheng(郑玉鳞), Wen Zhang(张文), Cheng Zhou(周诚), and Wei Geng(耿巍). Chin. Phys. B, 2021, 30(4): 040306.
[11] Design and fabrication of GeAsSeS chalcogenide waveguides with thermal annealing
Limeng Zhang(张李萌), Jinbo Chen(陈锦波), Jierong Gu(顾杰荣), Yixiao Gao(高一骁), Xiang Shen(沈祥), Yimin Chen(陈益敏), and Tiefeng Xu(徐铁峰). Chin. Phys. B, 2021, 30(3): 034210.
[12] Characterization of low-resistance ohmic contacts to heavily carbon-doped n-type InGaAsBi films treated by rapid thermal annealing
Shu-Xing Zhou(周书星), Li-Kun Ai(艾立鹍), Ming Qi(齐鸣), An-Huai Xu(徐安怀), Jia-Sheng Yan(颜家圣), Shu-Sen Li(李树森), and Zhi Jin(金智). Chin. Phys. B, 2021, 30(2): 027304.
[13] Preparation of graphene on SiC by laser-accelerated pulsed ion beams
Danqing Zhou(周丹晴), Dongyu Li(李东彧), Yuhan Chen(陈钰焓), Minjian Wu(吴旻剑), Tong Yang(杨童), Hao Cheng(程浩), Yuze Li(李昱泽), Yi Chen(陈艺), Yue Li(李越), Yixing Geng(耿易星), Yanying Zhao(赵研英), Chen Lin(林晨), Xueqing Yan(颜学庆), and Ziqiang Zhao(赵子强). Chin. Phys. B, 2021, 30(11): 116106.
[14] Erratum to "Fabrication of Tl2Ba2CaCu2O8 superconducting films without thallium pellets"
Teng-Da Xu(徐腾达), Jian Xing(邢建), Li-Tian Wang(王荔田), Jin-Li Zhang(张金利), Sheng-Hui Zhao(赵生辉), Yang Xiong(熊阳), Xin-Jie Zhao(赵新杰), Lu Ji(季鲁), Xu Zhang(张旭), and Ming He(何明). Chin. Phys. B, 2021, 30(1): 019901.
[15] Effect of annealing temperature on interfacial and electrical performance of Au-Pt-Ti/HfAlO/InAlAs metal-oxide-semiconductor capacitor
He Guan(关赫), Cheng-Yu Jiang(姜成语), Shao-Xi Wang(王少熙). Chin. Phys. B, 2020, 29(9): 096701.
No Suggested Reading articles found!