Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(11): 114203    DOI: 10.1088/1674-1056/25/11/114203
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Theoretical simulation of 87Rb absorption spectrum in a thermal cell

Hong Cheng(成红)1,2, Shan-Shan Zhang(张珊珊)1,2, Pei-Pei Xin(辛培培)1,2, Yuan Cheng(程元)1,2, Hong-Ping Liu(刘红平)1,2
1 State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China;
2 University of Chinese Academy of Sciences, Beijing 100049, China
Abstract  In this paper, we present a theoretical simulation of 87Rb absorption spectrum in a thermal cm-cell which is adaptive to the experimental observation. In experiment, the coupling and probe beams are configured to copropagate but perpendicular polarized, making up to five velocity selective optical pumping (VSOP) absorption dips able to be identified. A Λ-type electromagnetically induced transparency (EIT) is also observed for each group of velocity-selected atoms. The spectrum by only sweeping the probe beam can be decomposed into a combination of Doppler-broadened background and three VSOP dips for each group of velocity-selected atoms, accompanied by an EIT peak. This proposed theoretical model can be used to simulate the spectrum adaptive to the experimental observation by the non-linear least-square fit method. The fit for the high quality of experimental observation can determine valuable transition parameters such as decaying rates and coupling beam power accurately.
Keywords:  electromagnetically induced transparency      velocity selective resonance      optical pumping      multilevel system  
Received:  08 June 2016      Revised:  07 July 2016      Accepted manuscript online: 
PACS:  42.50.Gy (Effects of atomic coherence on propagation, absorption, and Amplification of light; electromagnetically induced transparency and Absorption)  
  32.70.Jz (Line shapes, widths, and shifts)  
  32.10.Fn (Fine and hyperfine structure)  
Fund: Project supported by the National Basic Research Program of China (Grant No. 2013CB922003) and the National Natural Science Foundation of China (Grant Nos. 91421305, 91121005, and 11174329).
Corresponding Authors:  Hong-Ping Liu     E-mail:  liuhongping@wipm.ac.cn

Cite this article: 

Hong Cheng(成红), Shan-Shan Zhang(张珊珊), Pei-Pei Xin(辛培培), Yuan Cheng(程元), Hong-Ping Liu(刘红平) Theoretical simulation of 87Rb absorption spectrum in a thermal cell 2016 Chin. Phys. B 25 114203

[1] Aspect A, Arimondo E, Kaiser R, Vansteenkiste N and CohenTannoudji C 1988 Phys. Rev. Lett. 61826
[2] Alzetta G, Moi L and Orriols G 1979 Il Nuovo Cimento B 52209
[3] Fleischhauer M, Keitel C H, Scully M O, Su C, Ulrich B T and Zhu S 1992 Phys. Rev. A 461468
[4] Kasapi A, Jain M, Yin G Y and Harris S E 1995 Phys. Rev. Lett. 742447
[5] Harris S E, Field J E and Imamoglu A 1990 Phys. Rev. Lett. 641107
[6] Hossain M M, Mitra S, Chakrabarti S, Bhattacharyya D, Ray B and Ghosh P N 2009 Eur. Phys. J. D 53141
[7] Joshi A and Xiao M 2003 Phys. Lett. A 317370
[8] Wang J, Kong L B, Tu X H, Jiang K J, Li K, Xiong H W, Zhu Y and Zhan M S 2004 Phys. Lett. A 328437
[9] Sargsyan A, Leroy C, Pashayan-Leroy Y, Mirzoyan R, Papoyan A and Sarkisyan D 2011 Appl. Phys. B 105767
[10] Wang M, Bai J H, Pei L Y, Lu X G, Gao Y L, Wang R Q, Wu L A, Yang S P, Pang Z G, Fu P M, Zuo Z C 2015 Acta Phys. Sin. 64154208(in Chinese)
[11] Jing H, Deng Y and Zhang W 2009 Phys. Rev. A 80025601
[12] Jing H, Liu X J, Ge M L and Zhan M S 2005 Phys. Rev. A 71062336
[13] Lezama A, Barreiro S and Akulshin A M 1999 Phys. Rev. A 594732
[14] Akulshin A M, Barreiro S and Lezama A 1998 Phys. Rev. A 572996
[15] Dimitrijevic J, Arsenovi c D and Jelenkovi c B M 2007 Phys. Rev. A 76013836
[16] Fulton D J, Shepherd S, Moseley R R, Sinclair B D and Dunn M H 1995 Phys. Rev. A 522302
[17] Goren C, Wilson-Gordon A D, Rosenbluh A and Friedmann H 2004 Phys. Rev. A 70043814
[18] Grewal R S and Pattabiraman M 2015 J. Phys. B 48085501
[19] Kim S K, Moon H S, Kim K and Kim J B 2003 Phys. Rev. A 68063813
[20] Wong V, Boyd R W, Stroud C R, Bennink R S and Marino A M 2003 Phys. Rev. A 68012502
[21] Chakrabarti S, Pradhan A, Ray B and Ghosh P N 2005 J. Phys. B 384321
[22] Moon G and Noh H R 2008 Phys. Rev. A 78032506
[23] Kitching J, Knappe S and Hollberg L 2002 Appl. Phys. Lett. 81553
[24] Zibrov A S, Lukin M D, Nikonov D E, Hollberg L, Scully M O, Velichansky V L and Robinson H G 1995 Phys. Rev. Lett. 751499
[25] Liu C, Dutton Z, Behroozi C H and Hau L V 2001 Nature 409490
[26] Peng A, Johnsson M, Bowen W P, Lam P K, Bachor H A and Hope J J 2005 Phys. Rev. A 71033809
[27] Scully M O 1991 Phys. Rev. Lett. 671855
[28] Jing H, Ozdemir S K, Geng Z, Zhang J, Lu X Y, Peng B, Yang L and Nori F 2015 Sci. Rep. 59663
[29] She Y C, Zheng X J and Wang D L 2014 Chin. Phys. B 23124202
[30] Totsuka K, Kobayashi N and Tomita M 2007 Phys. Rev. Lett. 98213904
[31] Yan X B, Gu K H, Fu C B, Cui C L and Wu J H 2014 Chin. Phys. B 23114201
[32] Zeng Z Q, Hou B P, Liu F T and Gao Z H 2014 Opt. Commun. 31512
[33] Jones D E, Franson J D and Pittman T B 2015 Phys. Rev. A 92043806
[34] Wang M, Lu X G, Bai J H, Pei L Y, Miao X X, Gao Y L, Wu L A, Fu P M, Yang S P, Pang Z G, Wang R Q and Zuo Z C 2015 Chin. Phys. B 24114205
[35] Xue Y L, Zhu S D, Liu J, Xiao T H, Feng B H and Li Z Y 2016 Chin. Phys. B 25044203
[36] Taichenachev A V, Tumaikin A M, Yudin and I V 1999 Phys. Rev. A 61011802(R)
[37] de Echaniz S R, Greentree A D, Durrant A V, Segal D M, Marangos J P and Vaccaro J A 2001 Phys. Rev. A 64013812
[38] Ottaviani C, Rebic S, Vitali D and Tombesi P 2006 Phys. Rev. A 73010301(R)
[39] Wu Y, Saldana J and Zhu Y 2003 Phys. Rev. A 67013811
[40] Agarwal G S and Harshawardhan W 1996 Phys. Rev. Lett. 771039
[41] Bharti V and Wasan A 2013 J. Phys. B 46125501
[42] Dimitrijevic J, Arsenovi c D and Jelenkovi c B M 2011 New J. Phys. 13033010
[43] Maguire L P, van Bijnen R M W, Mese E and Scholten R E 2006 J. Phys. B 392709
[44] Bhattacharyya D, Ray B and Ghosh P N 2007 J. Phys. B 404061
[45] Bhattacharyya D, Bandyopadhyay A, Chakrabarti S, Ray B and Ghosh P N 2007 Chem. Phys. Lett. 44024
[46] Bhattacharyya D, Ghosh A, Bandyopadhyay A, Saha S and De S 2015 J. Phys. B 48175503
[47] Bhattacharyya D, Dutta B K, Ray B and Ghosh P N 2004 Chem. Phys. Lett. 389113
[48] Krmpot A J, Rabasovic M D and Jelenkovic B M 2010 J. Phys. B 43135402
[49] Dey S, Mitra S, Ghosh P N and Ray B 2015 Optik 1262711
[50] Chakrabarti S, Pradhan A, Ray B and Ghosh P N 2005 J. Phys. B 384321
[51] Mitra S, Hossain M M, Ray B, Ghosh P N, Cartaleva S and Slavov D 2010 Opt. Commun. 2831500
[52] Harris S E 1997 Phys. Today 5036
[53] Chakrabarti S, Ray B and Ghosh P N 2007 Eur. Phys. J. D 42359
[54] Arimondo E, Inguscio M and Violino P 1977 Rev. Mod. Phys. 4931
[55] Wei X G, Wu J H, Sun G X, Shao Z, Kang Z H, Jiang Y and Gao J Y 2005 Phys. Rev. A 72023806
[56] Chen Y, Wei X G and Ham B S 2009 J. Phys. B 42065506
[57] Yang H, Yan D, Zhang M, Fang B, Zhang Y and Wu J H 2012 Chin. Phys. B 21114207
[1] Light manipulation by dual channel storage in ultra-cold Rydberg medium
Xue-Dong Tian(田雪冬), Zi-Jiao Jing(景梓骄), Feng-Zhen Lv(吕凤珍), Qian-Qian Bao(鲍倩倩), and Yi-Mou Liu(刘一谋). Chin. Phys. B, 2023, 32(4): 044205.
[2] Atomic optical spatial mode extractor for vector beams based on polarization-dependent absorption
Hong Chang(常虹), Xin Yang(杨欣), Jinwen Wang(王金文), Yan Ma(马燕), Xinqi Yang(杨鑫琪), Mingtao Cao(曹明涛), Xiaofei Zhang(张晓斐), Hong Gao(高宏), Ruifang Dong(董瑞芳), and Shougang Zhang(张首刚). Chin. Phys. B, 2023, 32(3): 034207.
[3] An all-optical phase detector by amplitude modulation of the local field in a Rydberg atom-based mixer
Xiu-Bin Liu(刘修彬), Feng-Dong Jia(贾凤东), Huai-Yu Zhang(张怀宇), Jiong Mei(梅炅), Wei-Chen Liang(梁玮宸), Fei Zhou(周飞), Yong-Hong Yu(俞永宏), Ya Liu(刘娅), Jian Zhang(张剑), Feng Xie(谢锋), and Zhi-Ping Zhong(钟志萍). Chin. Phys. B, 2022, 31(9): 090703.
[4] Dual-function terahertz metasurface based on vanadium dioxide and graphene
Jiu-Sheng Li(李九生) and Zhe-Wen Li(黎哲文). Chin. Phys. B, 2022, 31(9): 094201.
[5] Transient electromagnetically induced transparency spectroscopy of 87Rb atoms in buffer gas
Zi-Shan Xu(徐子珊), Han-Mu Wang(王汉睦), Zeng-Li Ba(巴曾立), and Hong-Ping Liu(刘红平). Chin. Phys. B, 2022, 31(7): 073201.
[6] Observation of V-type electromagnetically induced transparency and optical switch in cold Cs atoms by using nanofiber optical lattice
Xiateng Qin(秦夏腾), Yuan Jiang(蒋源), Weixin Ma(马伟鑫), Zhonghua Ji(姬中华),Wenxin Peng(彭文鑫), and Yanting Zhao(赵延霆). Chin. Phys. B, 2022, 31(6): 064216.
[7] An analytical model for cross-Kerr nonlinearity in a four-level N-type atomic system with Doppler broadening
Dinh Xuan Khoa, Nguyen Huy Bang, Nguyen Le Thuy An, Nguyen Van Phu, and Le Van Doai. Chin. Phys. B, 2022, 31(2): 024201.
[8] High resolution spectroscopy of Rb in magnetic field by far-detuning electromagnetically induced transparency
Zi-Shan Xu(徐子珊), Han-Mu Wang(王汉睦), Ming-Hao Cai(蔡明皓), Shu-Hang You(游书航), and Hong-Ping Liu(刘红平). Chin. Phys. B, 2022, 31(12): 123201.
[9] Modulated spatial transmission signals in the photonic bandgap
Wenqi Xu(许文琪), Hui Wang(王慧), Daohong Xie(谢道鸿), Junling Che(车俊岭), and Yanpeng Zhang(张彦鹏). Chin. Phys. B, 2022, 31(12): 124209.
[10] High-resolution three-dimensional atomic microscopy via double electromagnetically induced transparency
Abdul Wahab. Chin. Phys. B, 2021, 30(9): 094202.
[11] Optical state selection process with optical pumping in a cesium atomic fountain clock
Lei Han(韩蕾), Fang Fang(房芳), Wei-Liang Chen(陈伟亮), Kun Liu(刘昆), Ya-Ni Zuo(左娅妮), Fa-Song Zheng(郑发松), Shao-Yang Dai(戴少阳), and Tian-Chu Li(李天初). Chin. Phys. B, 2021, 30(8): 080602.
[12] An effective pumping method for increasing atomic utilization in a compact cold atom clock
Xin-Chuan Ouyang(欧阳鑫川), Bo-Wen Yang(杨博文), Jian-Liao Deng(邓见辽), Jin-Yin Wan(万金银), Ling Xiao(肖玲), Hang-Hang Qi(亓航航), Qing-Qing Hu(胡青青), and Hua-Dong Cheng(成华东). Chin. Phys. B, 2021, 30(8): 083202.
[13] Monte Carlo simulations of electromagnetically induced transparency in a square lattice of Rydberg atoms
Shang-Yu Zhai(翟尚宇) and Jin-Hui Wu(吴金辉). Chin. Phys. B, 2021, 30(7): 074206.
[14] Improvement of the short-term stability of atomic fountain clock with state preparation by two-laser optical pumping
Lei Han(韩蕾), Fang Fang(房芳), Wei-Liang Chen(陈伟亮), Kun Liu(刘昆), Shao-Yang Dai(戴少阳), Ya-Ni Zuo(左娅妮), and Tian-Chu Li(李天初). Chin. Phys. B, 2021, 30(5): 050602.
[15] A low noise, high fidelity cross phase modulation in multi-level atomic medium
Liangwei Wang(王亮伟), Jia Guan(关佳), Chengjie Zhu(朱成杰), Runbing Li(李润兵), and Jing Shi(石兢). Chin. Phys. B, 2021, 30(11): 114204.
No Suggested Reading articles found!