ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Theoretical simulation of 87Rb absorption spectrum in a thermal cell |
Hong Cheng(成红)1,2, Shan-Shan Zhang(张珊珊)1,2, Pei-Pei Xin(辛培培)1,2, Yuan Cheng(程元)1,2, Hong-Ping Liu(刘红平)1,2 |
1 State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China; 2 University of Chinese Academy of Sciences, Beijing 100049, China |
|
|
Abstract In this paper, we present a theoretical simulation of 87Rb absorption spectrum in a thermal cm-cell which is adaptive to the experimental observation. In experiment, the coupling and probe beams are configured to copropagate but perpendicular polarized, making up to five velocity selective optical pumping (VSOP) absorption dips able to be identified. A Λ-type electromagnetically induced transparency (EIT) is also observed for each group of velocity-selected atoms. The spectrum by only sweeping the probe beam can be decomposed into a combination of Doppler-broadened background and three VSOP dips for each group of velocity-selected atoms, accompanied by an EIT peak. This proposed theoretical model can be used to simulate the spectrum adaptive to the experimental observation by the non-linear least-square fit method. The fit for the high quality of experimental observation can determine valuable transition parameters such as decaying rates and coupling beam power accurately.
|
Received: 08 June 2016
Revised: 07 July 2016
Accepted manuscript online:
|
PACS:
|
42.50.Gy
|
(Effects of atomic coherence on propagation, absorption, and Amplification of light; electromagnetically induced transparency and Absorption)
|
|
32.70.Jz
|
(Line shapes, widths, and shifts)
|
|
32.10.Fn
|
(Fine and hyperfine structure)
|
|
Fund: Project supported by the National Basic Research Program of China (Grant No. 2013CB922003) and the National Natural Science Foundation of China (Grant Nos. 91421305, 91121005, and 11174329). |
Corresponding Authors:
Hong-Ping Liu
E-mail: liuhongping@wipm.ac.cn
|
Cite this article:
Hong Cheng(成红), Shan-Shan Zhang(张珊珊), Pei-Pei Xin(辛培培), Yuan Cheng(程元), Hong-Ping Liu(刘红平) Theoretical simulation of 87Rb absorption spectrum in a thermal cell 2016 Chin. Phys. B 25 114203
|
[1] |
Aspect A, Arimondo E, Kaiser R, Vansteenkiste N and CohenTannoudji C 1988 Phys. Rev. Lett. 61826
|
[2] |
Alzetta G, Moi L and Orriols G 1979 Il Nuovo Cimento B 52209
|
[3] |
Fleischhauer M, Keitel C H, Scully M O, Su C, Ulrich B T and Zhu S 1992 Phys. Rev. A 461468
|
[4] |
Kasapi A, Jain M, Yin G Y and Harris S E 1995 Phys. Rev. Lett. 742447
|
[5] |
Harris S E, Field J E and Imamoglu A 1990 Phys. Rev. Lett. 641107
|
[6] |
Hossain M M, Mitra S, Chakrabarti S, Bhattacharyya D, Ray B and Ghosh P N 2009 Eur. Phys. J. D 53141
|
[7] |
Joshi A and Xiao M 2003 Phys. Lett. A 317370
|
[8] |
Wang J, Kong L B, Tu X H, Jiang K J, Li K, Xiong H W, Zhu Y and Zhan M S 2004 Phys. Lett. A 328437
|
[9] |
Sargsyan A, Leroy C, Pashayan-Leroy Y, Mirzoyan R, Papoyan A and Sarkisyan D 2011 Appl. Phys. B 105767
|
[10] |
Wang M, Bai J H, Pei L Y, Lu X G, Gao Y L, Wang R Q, Wu L A, Yang S P, Pang Z G, Fu P M, Zuo Z C 2015 Acta Phys. Sin. 64154208(in Chinese)
|
[11] |
Jing H, Deng Y and Zhang W 2009 Phys. Rev. A 80025601
|
[12] |
Jing H, Liu X J, Ge M L and Zhan M S 2005 Phys. Rev. A 71062336
|
[13] |
Lezama A, Barreiro S and Akulshin A M 1999 Phys. Rev. A 594732
|
[14] |
Akulshin A M, Barreiro S and Lezama A 1998 Phys. Rev. A 572996
|
[15] |
Dimitrijevic J, Arsenovi c D and Jelenkovi c B M 2007 Phys. Rev. A 76013836
|
[16] |
Fulton D J, Shepherd S, Moseley R R, Sinclair B D and Dunn M H 1995 Phys. Rev. A 522302
|
[17] |
Goren C, Wilson-Gordon A D, Rosenbluh A and Friedmann H 2004 Phys. Rev. A 70043814
|
[18] |
Grewal R S and Pattabiraman M 2015 J. Phys. B 48085501
|
[19] |
Kim S K, Moon H S, Kim K and Kim J B 2003 Phys. Rev. A 68063813
|
[20] |
Wong V, Boyd R W, Stroud C R, Bennink R S and Marino A M 2003 Phys. Rev. A 68012502
|
[21] |
Chakrabarti S, Pradhan A, Ray B and Ghosh P N 2005 J. Phys. B 384321
|
[22] |
Moon G and Noh H R 2008 Phys. Rev. A 78032506
|
[23] |
Kitching J, Knappe S and Hollberg L 2002 Appl. Phys. Lett. 81553
|
[24] |
Zibrov A S, Lukin M D, Nikonov D E, Hollberg L, Scully M O, Velichansky V L and Robinson H G 1995 Phys. Rev. Lett. 751499
|
[25] |
Liu C, Dutton Z, Behroozi C H and Hau L V 2001 Nature 409490
|
[26] |
Peng A, Johnsson M, Bowen W P, Lam P K, Bachor H A and Hope J J 2005 Phys. Rev. A 71033809
|
[27] |
Scully M O 1991 Phys. Rev. Lett. 671855
|
[28] |
Jing H, Ozdemir S K, Geng Z, Zhang J, Lu X Y, Peng B, Yang L and Nori F 2015 Sci. Rep. 59663
|
[29] |
She Y C, Zheng X J and Wang D L 2014 Chin. Phys. B 23124202
|
[30] |
Totsuka K, Kobayashi N and Tomita M 2007 Phys. Rev. Lett. 98213904
|
[31] |
Yan X B, Gu K H, Fu C B, Cui C L and Wu J H 2014 Chin. Phys. B 23114201
|
[32] |
Zeng Z Q, Hou B P, Liu F T and Gao Z H 2014 Opt. Commun. 31512
|
[33] |
Jones D E, Franson J D and Pittman T B 2015 Phys. Rev. A 92043806
|
[34] |
Wang M, Lu X G, Bai J H, Pei L Y, Miao X X, Gao Y L, Wu L A, Fu P M, Yang S P, Pang Z G, Wang R Q and Zuo Z C 2015 Chin. Phys. B 24114205
|
[35] |
Xue Y L, Zhu S D, Liu J, Xiao T H, Feng B H and Li Z Y 2016 Chin. Phys. B 25044203
|
[36] |
Taichenachev A V, Tumaikin A M, Yudin and I V 1999 Phys. Rev. A 61011802(R)
|
[37] |
de Echaniz S R, Greentree A D, Durrant A V, Segal D M, Marangos J P and Vaccaro J A 2001 Phys. Rev. A 64013812
|
[38] |
Ottaviani C, Rebic S, Vitali D and Tombesi P 2006 Phys. Rev. A 73010301(R)
|
[39] |
Wu Y, Saldana J and Zhu Y 2003 Phys. Rev. A 67013811
|
[40] |
Agarwal G S and Harshawardhan W 1996 Phys. Rev. Lett. 771039
|
[41] |
Bharti V and Wasan A 2013 J. Phys. B 46125501
|
[42] |
Dimitrijevic J, Arsenovi c D and Jelenkovi c B M 2011 New J. Phys. 13033010
|
[43] |
Maguire L P, van Bijnen R M W, Mese E and Scholten R E 2006 J. Phys. B 392709
|
[44] |
Bhattacharyya D, Ray B and Ghosh P N 2007 J. Phys. B 404061
|
[45] |
Bhattacharyya D, Bandyopadhyay A, Chakrabarti S, Ray B and Ghosh P N 2007 Chem. Phys. Lett. 44024
|
[46] |
Bhattacharyya D, Ghosh A, Bandyopadhyay A, Saha S and De S 2015 J. Phys. B 48175503
|
[47] |
Bhattacharyya D, Dutta B K, Ray B and Ghosh P N 2004 Chem. Phys. Lett. 389113
|
[48] |
Krmpot A J, Rabasovic M D and Jelenkovic B M 2010 J. Phys. B 43135402
|
[49] |
Dey S, Mitra S, Ghosh P N and Ray B 2015 Optik 1262711
|
[50] |
Chakrabarti S, Pradhan A, Ray B and Ghosh P N 2005 J. Phys. B 384321
|
[51] |
Mitra S, Hossain M M, Ray B, Ghosh P N, Cartaleva S and Slavov D 2010 Opt. Commun. 2831500
|
[52] |
Harris S E 1997 Phys. Today 5036
|
[53] |
Chakrabarti S, Ray B and Ghosh P N 2007 Eur. Phys. J. D 42359
|
[54] |
Arimondo E, Inguscio M and Violino P 1977 Rev. Mod. Phys. 4931
|
[55] |
Wei X G, Wu J H, Sun G X, Shao Z, Kang Z H, Jiang Y and Gao J Y 2005 Phys. Rev. A 72023806
|
[56] |
Chen Y, Wei X G and Ham B S 2009 J. Phys. B 42065506
|
[57] |
Yang H, Yan D, Zhang M, Fang B, Zhang Y and Wu J H 2012 Chin. Phys. B 21114207
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|