Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(11): 114202    DOI: 10.1088/1674-1056/25/11/114202
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Self-calibration wavelength modulation spectroscopy for acetylene detection based on tunable diode laser absorption spectroscopy

Qin-Bin Huang(黄秦斌), Xue-Mei Xu(许雪梅), Chen-Jing Li(李晨静), Yi-Peng Ding(丁一鹏), Can Cao(曹粲), Lin-Zi Yin(尹林子), Jia-Feng Ding(丁家峰)
School of Physics and Electronics, Central South University, Changsha 410083, China
Abstract  The expressions of the second harmonic (2f) signal are derived on the basis of absorption spectral and lock-in theories. A parametric study indicates that the phase shift between the intensity and wavelength modulation makes a great contribution to the 2f signal. A self-calibration wavelength modulation spectroscopy (WMS) method based on tunable diode laser absorption spectroscopy (TDLAS) is applied, combining the advantages of ambient pressure, temperature suppression, and phase-shift influences elimination. Species concentration is retrieved simultaneously from selected 2f signal pairs of measured and reference WMS-2f spectra. The absorption line of acetylene (C2H2) at 1530.36 nm near-infrared is selected to detect C2H2 concentrations in the range of 0-400 ppmv. System sensitivity, detection precision and limit are markedly improved, demonstrating that the self-calibration method has better detecting performance than the conventional WMS.
Keywords:  wavelength modulation spectroscopy      phase shift      self-calibration method      acetylene detection  
Received:  09 March 2016      Revised:  16 May 2016      Accepted manuscript online: 
PACS:  42.30.Rx (Phase retrieval)  
  42.55.Px (Semiconductor lasers; laser diodes)  
  42.79.-e (Optical elements, devices, and systems)  
  42.87.-d (Optical testing techniques)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61172047, 61502538, and 61501525).
Corresponding Authors:  Xue-Mei Xu     E-mail:  xuxuemei999@126.com

Cite this article: 

Qin-Bin Huang(黄秦斌), Xue-Mei Xu(许雪梅), Chen-Jing Li(李晨静), Yi-Peng Ding(丁一鹏), Can Cao(曹粲), Lin-Zi Yin(尹林子), Jia-Feng Ding(丁家峰) Self-calibration wavelength modulation spectroscopy for acetylene detection based on tunable diode laser absorption spectroscopy 2016 Chin. Phys. B 25 114202

[1] Duval M 1989 IEEE Electr. Insul. Mag. 5 22
[2] Chen W, Zhou Q, Su X, Xu L and Peng S 2013 Sensors Transducers 154195
[3] Gondal M A, Dastageer A and Shwehdi M H 2004 Talanta 62 131
[4] Liu K, Guo X Y, Yi H M, Chen W D, Zhang W J and Gao X M 2009 Opt. Lett. 34 1594
[5] Liu A, Jones R, Liao L, Samara-Rubin D, Cohen O and Paniccia M 2004 Nature 427 615
[6] Reid J and Labrie D 1981 Appl. Phys. B 26 203
[7] Xia H, Dong F Z, Wu B, Zhang Z R, Pang T, Sun P S, Cui X J, Han L and Wang Y 2015 Chin. Phys. B 24 034204
[8] Qu Z, Ghorbani R, Valiev D and Schmidt F M 2015 Opt. Express 23 16492
[9] Bjorklund G C 1980 Opt. Lett. 5 15
[10] Liu J T C, Jeffries J B and Hanson R K 2004 Appl. Phys. B 78 503
[11] Iwamitsu K, Aihara S, Shimamoto T, Fujii A and Akai I 2012 Rev. Sci. Instrum. 83 073101
[12] Salati S H and Alireza K 2014 Appl. Phys. B 116 521
[13] Che L, Ding Y J, Peng Z M and Li X H 2012 Chin. Phys. B 21 127803
[14] Wei W, Chang J, Huang Q, Zhu C, Wang Q, Wang Z and Lu G 2015 Appl. Phys. B 118 75
[15] Cai W W and Kaminski C F 2014 Appl. Phys. Lett. 104 154106
[16] Jacobsen G, Olesen H, Birkedahl F and Tromborg B 1982 Electron. Lett. 18 874
[17] Chawki M J, Auffret R, Coquil E L, Pottier P, Berthou L, Paciullo H and Bihan J L 1992 J. Lightwave. Technol. 10 1388
[18] Hu C, Chen X and Li Z 2015 3rd International Conference on Material, Mechanical and Manufacturing Engineering (IC3ME 2015), in Advances in Engineering Research, p. 1082
[19] Chen Z, Tao S H, Du X J and Hou X J 2013 Spectrosc. Spect. Anal. 33 312(in Chinese)
[20] Lewicki R, Doty J H, Curl R F, Tittel F K and Wysocki G 2009 P. Natl. Acad. Sci. 106 12587
[1] Three-step self-calibrating generalized phase-shifting interferometry
Yu Zhang(张宇). Chin. Phys. B, 2022, 31(3): 030601.
[2] Experimental demonstration of a fast calibration method for integrated photonic circuits with cascaded phase shifters
Junqin Cao(曹君勤), Zhixin Chen(陈志歆), Yaxin Wang(王亚新), Tianfeng Feng(冯田峰), Zhihao Li(李志浩), Zeyu Xing(邢泽宇), Huashan Li(李华山), and Xiaoqi Zhou(周晓祺). Chin. Phys. B, 2022, 31(11): 114204.
[3] A low noise, high fidelity cross phase modulation in multi-level atomic medium
Liangwei Wang(王亮伟), Jia Guan(关佳), Chengjie Zhu(朱成杰), Runbing Li(李润兵), and Jing Shi(石兢). Chin. Phys. B, 2021, 30(11): 114204.
[4] Repulsive bubble-bubble interaction in ultrasonic field
Ling-Ling Zhang(张玲玲), Wei-Zhong Chen(陈伟中), Yao-Rong Wu(武耀蓉), Yang Shen(沈阳), and Guo-Ying Zhao(赵帼英). Chin. Phys. B, 2021, 30(10): 104301.
[5] Generation of orbital angular momentum and focused beams with tri-layer medium metamaterial
Zhi-Chao Sun(孙志超), Meng-Yao Yan(闫梦瑶), and Bi-Jun Xu(徐弼军)†. Chin. Phys. B, 2020, 29(10): 104101.
[6] Soliton molecules and dynamics of the smooth positon for the Gerdjikov–Ivanov equation
Xiangyu Yang(杨翔宇), Zhao Zhang(张钊), and Biao Li(李彪)†. Chin. Phys. B, 2020, 29(10): 100501.
[7] Atmospheric N2O gas detection based on an inter-band cascade laser around 3.939 μm
Chun-Yan Sun(孙春艳), Yuan Cao(曹渊), Jia-Jin Chen(陈家金), Jing-Jing Wang(王静静), Gang Cheng(程刚), Gui-Shi Wang(王贵师), Xiao-Ming Gao(高晓明). Chin. Phys. B, 2020, 29(1): 010704.
[8] Single-shot phase-shifting digital holography with a photon-sieve-filtering telescope
You Li(李优), Yao-Cun Li(李垚村), Jun-Yong Zhang(张军勇), Yan-Li Zhang(张艳丽), Xue-Mei Li(李雪梅). Chin. Phys. B, 2019, 28(8): 084205.
[9] Hydrogen sulphide detection using near-infrared diode laser and compact dense-pattern multipass cell
Xing Tian(田兴), Yuan Cao(曹渊), Jia-Jin Chen(陈家金), Kun Liu(刘锟), Gui-Shi Wang(王贵师), Xiao-Ming Gao(高晓明). Chin. Phys. B, 2019, 28(6): 063301.
[10] Simultaneous polarization separation and switching for 100-Gbps DP-QPSK signals in backbone networks
Yu-Long Su(苏玉龙), Huan Feng(冯欢), Hui Hu(胡辉), Wei Wang(汪伟), Tao Duan(段弢), Yi-Shan Wang(王屹山), Jin-Hai Si(司金海), Xiao-Ping Xie(谢小平), He-Ning Yang(杨合宁), Xin-Ning Huang(黄新宁). Chin. Phys. B, 2019, 28(2): 024216.
[11] Highly-sensitive NO, NO2, and NH3 measurements with an open-multipass cell based on mid-infrared wavelength modulation spectroscopy
Xiang Chen(陈祥), Chen-Guang Yang(杨晨光), Mai Hu(胡迈), Jian-Kang Shen(沈建康), Er-Chao Niu(牛二超), Zhen-Yu Xu(许振宇), Xue-Li Fan(范雪丽), Min Wei(魏敏), Lu Yao(姚路), Ya-Bai He(何亚柏), Jian-Guo Liu(刘建国), Rui-Feng Kan(阚瑞峰). Chin. Phys. B, 2018, 27(4): 040701.
[12] Phase shift effects of radio-frequency bias on ion energy distribution in continuous wave and pulse modulated inductively coupled plasmas
Chan Xue(薛婵), Fei Gao(高飞), Yong-Xin Liu(刘永新), Jia Liu(刘佳), You-Nian Wang(王友年). Chin. Phys. B, 2018, 27(4): 045202.
[13] Absorption linewidth inversion with wavelength modulation spectroscopy
Yue Yan(颜悦), Zhenhui Du(杜振辉), Jinyi Li(李金义), Ruixue Wang(王瑞雪). Chin. Phys. B, 2018, 27(2): 024205.
[14] A new fully quantum-mechanical method used to calculate the collisional broadening coefficients and shift coefficients of Rb D1 lines perturbed by noble gases He and Ar
Wei Zhang(张伟), Yanchao Shi(史彦超), Bitao Hu(胡碧涛), Yi Zhang(张毅). Chin. Phys. B, 2018, 27(1): 013201.
[15] Wavelength modulation spectroscopy for measurements of gas parameters in combustion field
Dong-Sheng Qu(屈东胜), Yan-Ji Hong(洪延姬), Guang-Yu Wang(王广宇), Hu Pan(潘虎). Chin. Phys. B, 2017, 26(6): 064207.
No Suggested Reading articles found!