Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(11): 113702    DOI: 10.1088/1674-1056/25/11/113702
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Theoretical derivation and simulation of a versatileelectrostatic trap for cold polar molecules

Shengqiang Li(李胜强)
School of New Energy and Electronic Engineering, Yancheng Teachers University, Yancheng 224002, China
Abstract  We propose a versatile electrostatic trap scheme using several charged spherical electrodes and a bias electric field. We first give the two-ball scheme and derive the analytical solution of the electric field. In order to make a comparison, we also give the numerical solution calculated by the finite element software (Ansoft Maxwell). Considering the loading of cold polar molecules into the trap, we give the three-ball scheme. We first give the analytical and numerical solutions of the distribution of the electric field. Then we simulate the dynamic process of the loading and trapping cold molecules using the classical Monte Carlo method. We analyze the influence of the velocity of the incident molecular beam and the loading time on the loading efficiency. After that, we give the temperature of the trapped cold molecules. Our study shows that the loading efficiency can reach 82%, and the corresponding temperature of the trapped molecules is about 24.6 mK. At last, we show that the single well divides into two ones by increasing the bias electric field or decreasing the voltages applied to the spherical electrodes.
Keywords:  cold polar molecules      electrostatic trapping      Monte Carlo simulation  
Received:  23 April 2016      Revised:  26 June 2016      Accepted manuscript online: 
PACS:  37.10.Pq (Trapping of molecules)  
  37.10.Mn (Slowing and cooling of molecules)  
  37.10.Vz (Mechanical effects of light on atoms, molecules, and ions)  
  37.20.+j (Atomic and molecular beam sources and techniques)  
Fund: Project supported by the National Nature Science Foundation of China (Grant No. 11504318).
Corresponding Authors:  Shengqiang Li     E-mail:  lishengqiang2007@126.com

Cite this article: 

Shengqiang Li(李胜强) Theoretical derivation and simulation of a versatileelectrostatic trap for cold polar molecules 2016 Chin. Phys. B 25 113702

[1] Thorpe M J, Moll K D, Jones R J, Safdi B and Ye J 2006 Science 311 1595
[2] Hudson J J, Sauer B E, Tarbutt M R and Hinds E A 2002 Phys. Rev. Lett. 89 023003
[3] Gilijamse J J, Hoekstra S, vande Meerakker S Y T, Groenenboom G C and Meijer G 2006 Science 313 1617
[4] Willitsch S, Bell M T, Gingell A D, Procter S R and Sotfley T P 2008 Phys. Rev. Lett. 100 043203
[5] Otto R, Mikosch J, Trippel S, Weidemuller M and Wester R 2008 Phys. Rev. Lett. 101 063201
[6] DeMille D 2002 Phys. Rev. Lett. 88 067901
[7] Meerakker S Y T, Smeets P H M, Vanhaecke N, Jongma R T and Meijer G 2005 Phys. Rev. Lett. 94 023004
[8] Gilijamse J J, Hoekstra S, Meek S A, Metsala M, Meerakker S Y T and Meijer G 2007 J. Chem. Phys. 127 221102
[9] Rieger T, Junglen T, Rangwala S A, Pinkse P W H and Rempe G 2005 Phys. Rev. Lett. 95 173002
[10] Kleinert J, Haimberger C, Zabawa P J and Bigelow N P 2007 Phys. Rev. Lett. 99 143002
[11] Meek S A, Conrad H and Meijer G 2009 Science 324 1699
[12] Ma H, Zhou B, Liao B and Yin J P 2007 Chin. Phys. Lett. 24 1228
[13] Wang Q, Li S Q, Hou S Y, Xia Y, Wang H L and Yin J P 2014 Chin. Phys. B 23 013701
[14] Li S Q, Xu L, Xia Y, Wang H L and Yin J P 2014 Chin. Phys. B 23 123701
[15] Wang Z X, Gu Z X, Xia Y, Ji X and Yin J P 2013 J. Opt. Soc. Am. B 30 2348
[16] Wang Z X, Gu Z X, Deng L Z and Yin J P 2015 Chin. Phys. B 24 053701
[17] Liu J P, Hou S Y, Wei B and Yin J P 2015 Acta Phys. Sin. 64 173701(in Chinese)
[18] Xia Y, Yin Y L, Ji X and Yin J P 2012 Chin. Phys. Lett. 29 053701
[19] Andrew M R, Townsend C G, Miesner H J, Durfee D S, Kurn D M and Ketterle W 1997 Science 275 637
[20] Inouye S, Gupta S, Rosenband T, Chikkatur A P, Görlitz A, Gustavson T L, Leanhardt A E, Pritchard D E and Ketterle W 2001 Phys. Rev. Lett. 87 080402
[21] Albiez M, Gati R, Fölling J, Hunsmann S, Cristiani M and Oberthaler M K 2005 Phys. Rev. Lett. 95 010402
[22] Buggle C, Léonard J, von Klitzing W and Walraven J T M 2004 Phys. Rev. Lett. 93 173202
[23] van de Meerakker S Y T, Smeets P H M, Vanhaecke N, Jongma R T and Meijer G 2005 Phys. Rev. Lett. 94 023004
[24] Deng L Z, Liang Y, Gu Z Z, Hou S Y, Li S Q, Xia Y and Yin J P 2011 Phys. Rev. Lett. 106 140401
[25] Gu Z X, Guo C X, Hou S Y, Li S Q, Deng L Z and Yin J P 2013 Phys. Rev. A 87 053401
[26] Steib G F and Moll E 2002 J. Phys. D-Appl. Phys. 6 243
[27] Vento V T, Bergueiro J, Cartelli D and Kreiner A A V A J 2011 Appl. Radiat. Isotopes 69 1649
[28] Wang Q, Hou S Y, Xu L and Yin J P 2016 Phys. Chem. Chem. Phys. 18 5432
[29] Hayt W H and Buck J A 2001 Engineering Electromagnetics, 6th edn. (New York:McGraw-Hill)
[30] Bethlem H L, Berden G, Crompvoets F M H, Jongma R T, van Roij A J A and Meijer G 2000 Nature 406 491
[31] Crompvoets F M H, Jongma R T, Bethlem H L, van Roij A J A and Meijer G 2002 Phys. Rev. Lett. 89 093004
[32] Hou S Y, Li S Q, Deng L Z and Yin J P 2013 J. Phys. B-At. Mol. Opt. Phys. 46 045301
[33] van de Meerakker S Y T, Vanhaecke N, van der Loo M P J, Groenenboom G C and Meijer G 2005 Phys. Rev. Lett. 95 013003
[34] Gilijamse J J, Hoekstra S, Meek S A, Metsala M, van de Meerakker S Y T, Meijer G and Groenenboom G C 2007 J. Chem. Phys. 127 221102
[35] Andre A, DeMille D, Doyle J M, Lukin M D, Maxwell S E, Rabl P, Schoelkopf R J and Zoller P 2006 Nat. Phys. 2 636
[1] Abnormal magnetic behavior of prussian blue analogs modified with multi-walled carbon nanotubes
Jia-Jun Mo(莫家俊), Pu-Yue Xia(夏溥越), Ji-Yu Shen(沈纪宇), Hai-Wen Chen(陈海文), Ze-Yi Lu(陆泽一), Shi-Yu Xu(徐诗语), Qing-Hang Zhang(张庆航), Yan-Fang Xia(夏艳芳), Min Liu(刘敏). Chin. Phys. B, 2023, 32(4): 047503.
[2] Computational studies on magnetism and ferroelectricity
Ke Xu(徐可), Junsheng Feng(冯俊生), and Hongjun Xiang(向红军). Chin. Phys. B, 2022, 31(9): 097505.
[3] Steady-state and transient electronic transport properties of β-(AlxGa1-x)2O3/Ga2O3 heterostructures: An ensemble Monte Carlo simulation
Yan Liu(刘妍), Ping Wang(王平), Ting Yang(杨婷), Qian Wu(吴茜), Yintang Yang(杨银堂), and Zhiyong Zhang(张志勇). Chin. Phys. B, 2022, 31(11): 117305.
[4] Monte Carlo simulations of electromagnetically induced transparency in a square lattice of Rydberg atoms
Shang-Yu Zhai(翟尚宇) and Jin-Hui Wu(吴金辉). Chin. Phys. B, 2021, 30(7): 074206.
[5] Zero-field skyrmions in FeGe thin films stabilized through attaching a perpendicularly magnetized single-domain Ni layer
Zi-Bo Zhang(张子博) and Yong Hu(胡勇). Chin. Phys. B, 2021, 30(7): 077503.
[6] Emergent O(4) symmetry at the phase transition from plaquette-singlet to antiferromagnetic order in quasi-two-dimensional quantum magnets
Guangyu Sun(孙光宇), Nvsen Ma(马女森), Bowen Zhao(赵博文), Anders W. Sandvik, and Zi Yang Meng(孟子杨). Chin. Phys. B, 2021, 30(6): 067505.
[7] Correlated insulating phases in the twisted bilayer graphene
Yuan-Da Liao(廖元达), Xiao-Yan Xu(许霄琰), Zi-Yang Meng(孟子杨), and Jian Kang(康健). Chin. Phys. B, 2021, 30(1): 017305.
[8] Tunable deconfined quantum criticality and interplay of different valence-bond solid phases
Bowen Zhao(赵博文), Jun Takahashi, Anders W. Sandvik. Chin. Phys. B, 2020, 29(5): 057506.
[9] Magnetic properties of La2CuMnO6 double perovskite ceramic investigated by Monte Carlo simulations
S Mtougui, I EL Housni, N EL Mekkaoui, S Ziti, S Idrissi, H Labrim, R Khalladi, L Bahmad. Chin. Phys. B, 2020, 29(5): 056101.
[10] Two types of highly efficient electrostatic traps for single loading or multi-loading of polar molecules
Bin Wei(魏斌), Hengjiao Guo(郭恒娇), Yabing Ji(纪亚兵), Shunyong Hou(侯顺永), Jianping Yin(印建平). Chin. Phys. B, 2020, 29(4): 043701.
[11] Phase transition of DNA compaction in confined space: Effects of macromolecular crowding are dominant
Erkun Chen(陈尔坤), Yangtao Fan(范洋涛), Guangju Zhao(赵光菊), Zongliang Mao(毛宗良), Haiping Zhou(周海平), Yanhui Liu(刘艳辉). Chin. Phys. B, 2020, 29(1): 018701.
[12] Variational and diffusion Monte Carlo simulations of a hydrogen molecular ion in a spherical box
Xuehui Xiao(肖学会), Kuo Bao(包括), Youchun Wang(王友春), Hui Xie(谢慧), Defang Duan(段德芳), Fubo Tian(田夫波), Tian Cui(崔田). Chin. Phys. B, 2019, 28(5): 056401.
[13] Computational study of inverse ferrite spinels
A EL Maazouzi, R Masrour, A Jabar, M Hamedoun. Chin. Phys. B, 2019, 28(5): 057504.
[14] Phase diagrams and magnetic properties of the mixed spin-1 and spin-3/2 Ising ferromagnetic thin film:Monte Carlo treatment
B Boughazi, M Boughrara, M Kerouad. Chin. Phys. B, 2019, 28(2): 027501.
[15] Effect of particle size distribution on magnetic behavior of nanoparticles with uniaxial anisotropy
S Rizwan Ali, Farah Naz, Humaira Akber, M Naeem, S Imran Ali, S Abdul Basit, M Sarim, Sadaf Qaseem. Chin. Phys. B, 2018, 27(9): 097503.
No Suggested Reading articles found!