Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(11): 113701    DOI: 10.1088/1674-1056/25/11/113701
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Semi-analytical model for quasi-double-layer surface electrode ion traps

Jian Zhang(张见)1, Shuming Chen(陈书明)1,2, Yaohua Wang(王耀华)1
1 College of Computer, National University of Defense Technology, Changsha 410073, China;
2 State Key Laboratory of High Performance Computing, National University of Defense Technology, Changsha 410073, China
Abstract  To realize scale quantum processors, the surface-electrode ion trap is an effective scaling approach, including single-layer, double-layer, and quasi-double-layer traps. To calculate critical trap parameters such as the trap center and trap depth, the finite element method (FEM) simulation was widely used, however, it is always time consuming. Moreover, the FEM simulation is also incapable of exhibiting the direct relationship between the geometry dimension and these parameters. To eliminate the problems above, House and Madsen et al. have respectively provided analytic models for single-layer traps and double-layer traps. In this paper, we propose a semi-analytical model for quasi-double-layer traps. This model can be applied to calculate the important parameters above of the ion trap in the trap design process. With this model, we can quickly and precisely find the optimum geometry design for trap electrodes in various cases.
Keywords:  quantum information      ion trap      analytical model  
Received:  30 May 2016      Revised:  19 July 2016      Accepted manuscript online: 
PACS:  37.10.Gh (Atom traps and guides)  
  37.10.Ty (Ion trapping)  
Corresponding Authors:  Shuming Chen, Yaohua Wang     E-mail:  smchen@nudt.edu.cn;nudtyh@gmail.com

Cite this article: 

Jian Zhang(张见), Shuming Chen(陈书明), Yaohua Wang(王耀华) Semi-analytical model for quasi-double-layer surface electrode ion traps 2016 Chin. Phys. B 25 113701

[1] Paul W 1990 Rev. Mod. Phys. 62 531
[2] Monroe C and Wineland D J 2008 Sci. Am. 299 64
[3] Monroe C and Kim J 2013 Science 339 1164
[4] Chiaverini J, Blakestad R B, Britton J, Jost J D, Langer C, Leibfried D, Ozeri R and Wineland D J 2005 Quant. Inf. Comp. 5 419
[5] Pearson C E, Leibrandt D R, Bakr W S, Mallard W J, Brown K R and Chuang I L 2005 Phys. Rev. A 73 032307
[6] Seidelin S, Chiaverini J, Reichle R, Bollinger J J, Leibfried D, Britton J, Wesenberg J H, Blakestad R B, Epstein R J, Hume D B, Itano W M, Jost J D, Langer C, Ozeri R, Shiga N and Wineland D J 2006 Phys. Rev. Lett. 96 253003
[7] Brown K R, Clark R J, Labaziewicz J, Richerme P, Leibrandt D R and Chuang I L 2007 Phys. Rev. A 75 015401
[8] http://www.quantum.gatech.edu/trapOverview.shtml
[9] Chen L, Wan W, Xie Y, Zhou F and Feng M 2012 Chin. Phys. Lett. 29 033701
[10] Zhang J, Chen S M and Liu W 2014 Acta Phys. Sin. 63 060303(in Chinese)
[11] Guise N D, Fallek S D, Stevens K E, Brown K R, Volin C, Harter A W, Amini J M, Higashi R E, Lu S T, Chanhvongsak H M, Nguyen T A, Marcus M S, Ohnstein T R and Youngner D W 2015 J. Appl. Phys. 117 174901
[12] Amini1 J M, Uys H, Wesenberg J H, Seidelin S, Britton J, Bollinger J J, Leibfried D, Ospelkaus C, VanDevender A P and Wineland D J 2010 New J. Phys. 12 033031
[13] Wang S X, Labaziewicz J, Ge Y, Shewmon R and Chuang I L 2010 Phys. Rev. A 81 062332
[14] Ospelkaus C, Warring U, Colombe Y, Brown K R, Amini J M, Leibfried D and Wineland D J 2011 Nature 476 181
[15] Chen L, Wan W, Xie Y, Wu H Y, Zhou F and Feng M 2013 Chin. Phys. Lett. 30 013702
[16] Mount E, Baek SY, Blain M, Stick D, Gaultney D, Crain S, Noek R, Kim T, Maunz P and Kim J 2013 New J. Phys. 15 093018
[17] Shu G, Vittorini G, Buikema A, Nichols C S, Volin C, Stick D and Brown K R 2014 Phys. Rev. A 89 062308
[18] Wilson A C, Colombe Y, Brown K R, Knill E, Leibfried D and Wineland D J 2014 Nature 512 57
[19] Herold C D, Fallek S D, Merrill J T, Meier A M, Brown K R, Volin C E and Amini J M 2016 New J. Phys. 18 023048
[20] Rowej M A, Benkish A, Demarco B, Leibfried D, Meyer V, Beall J, Britton J, Hughes J, Itano W M, Jelenkovic B, Langer C, Rosenband T and Wineland D J 2002 Quantum Inf. Comput. 2 257
[21] Stick D, Hensinger W, Olmschenk S, Madsen M J, Schwab K and Monroe C 2006 Nat. Phys. 2 36
[22] Huber G, Deuschle T, Schnitzler W, Reichle R, Singer K and Kaler F S 2008 New J. Phys. 10 013004
[23] Schulz S, Poschinger U, Ziesel F and Kaler F S 2008 New J. Phys. 10 2039
[24] Jakob R and Vladan V 2011 Atom Chips (Weinheim:Wiley-VCH) pp. 395-420
[25] Cho D D, Hong S, Lee M and Kim T 2015 Micro Nano Lett. 3 1
[26] Wilpers G, See P, Gill P and Sinclair A G 2012 Nat. Nanotechnol. 7 9
[27] See P, Wilpers G, Gill P and Sinclair A G 2013 J. Microelectromech. S. 22 1180
[28] Leibrandt D R, Labaziewicz J, Clark R J and Chuang I L 2011 Quant. Inf. Comp. 9 901
[29] Leibrandt D R 2009 Integrated Chips and Optical Cavities for Trapped Ion Quantum Information Processing (Ph. D. dissertation) (Cambridge:Masschusetts Institute of Technology)
[30] House M G 2008 Phys. Rev. A 78 033402
[31] Madsen M J, Hensinger W K, Stick D, Rabchuk J A and Monroe C 2004 Appl. Phys. B 78 639
[32] Dehmelt H G 1967 Radiofrequency Spectroscopy of Stored Ions I:Storage (New York:Academic Press) pp. 53-72
[33] Roman S 2010 New J. Phys. 12 023038
[34] Reichle R, Leibfried D, Blakestad R B, Britton J, Jost J D, Knill E, Langer C, Ozeri R, Seidelin S and Wineland D J 2006 Fortschr. Phys. 54 666
[1] Non-Markovianity of an atom in a semi-infinite rectangular waveguide
Jing Zeng(曾静), Yaju Song(宋亚菊), Jing Lu(卢竞), and Lan Zhou(周兰). Chin. Phys. B, 2023, 32(3): 030305.
[2] Relativistic motion on Gaussian quantum steering for two-mode localized Gaussian states
Xiao-Long Gong(龚小龙), Shuo Cao(曹硕), Yue Fang(方越), and Tong-Hua Liu(刘统华). Chin. Phys. B, 2022, 31(5): 050402.
[3] A simple analytical model of laser direct-drive thin shell target implosion
Bo Yu(余波), Tianxuan Huang(黄天晅), Li Yao(姚立), Chuankui Sun(孙传奎), Wanli Shang(尚万里), Peng Wang(王鹏), Xiaoshi Peng(彭晓世), Qi Tang(唐琦), Zifeng Song(宋仔峰), Wei Jiang(蒋炜), Zhongjing Chen(陈忠靖), Yudong Pu(蒲昱东), Ji Yan(晏骥), Yunsong Dong(董云松), Jiamin Yang(杨家敏), Yongkun Ding(丁永坤), and Jian Zheng(郑坚). Chin. Phys. B, 2022, 31(4): 045204.
[4] Quantum watermarking based on threshold segmentation using quantum informational entropy
Jia Luo(罗佳), Ri-Gui Zhou(周日贵), Wen-Wen Hu(胡文文), YaoChong Li(李尧翀), and Gao-Feng Luo(罗高峰). Chin. Phys. B, 2022, 31(4): 040302.
[5] High-performance coherent population trapping clock based on laser-cooled atoms
Xiaochi Liu(刘小赤), Ning Ru(茹宁), Junyi Duan(段俊毅), Peter Yun(云恩学), Minghao Yao(姚明昊), and Jifeng Qu(屈继峰). Chin. Phys. B, 2022, 31(4): 043201.
[6] Quantum storage of single photons with unknown arrival time and pulse shapes
Yu You(由玉), Gong-Wei Lin(林功伟), Ling-Juan Feng(封玲娟), Yue-Ping Niu(钮月萍), and Shang-Qing Gong(龚尚庆). Chin. Phys. B, 2021, 30(8): 084207.
[7] Improving the purity of heralded single-photon sources through spontaneous parametric down-conversion process
Jing Wang(王静), Chun-Hui Zhang(张春辉), Jing-Yang Liu(刘靖阳), Xue-Rui Qian(钱雪瑞), Jian Li(李剑), and Qin Wang(王琴). Chin. Phys. B, 2021, 30(7): 070304.
[8] Numerical analysis of motional mode coupling of sympathetically cooled two-ion crystals
Li-Jun Du(杜丽军), Yan-Song Meng(蒙艳松), Yu-Ling He(贺玉玲), and Jun Xie(谢军). Chin. Phys. B, 2021, 30(7): 073702.
[9] Atomic magnetometer with microfabricated vapor cells based on coherent population trapping
Xiaojie Li(李晓杰), Yue Shi(史越), Hongbo Xue(薛洪波), Yong Ruan(阮勇), and Yanying Feng(冯焱颖). Chin. Phys. B, 2021, 30(3): 030701.
[10] Accurate electron affinity of atomic cerium and excited states of its anion
Xiao-Xi Fu(付筱茜), Ru-Lin Tang(唐如麟), Yu-Zhu Lu(陆禹竹), Chuan-Gang Ning(宁传刚). Chin. Phys. B, 2020, 29(7): 073201.
[11] Fast achievement of quantum state transfer and distributed quantum entanglement by dressed states
Liang Tian(田亮), Li-Li Sun(孙立莉), Xiao-Yu Zhu(朱小瑜), Xue-Ke Song(宋学科), Lei-Lei Yan(闫磊磊), Er-Jun Liang(梁二军), Shi-Lei Su(苏石磊), Mang Feng(冯芒). Chin. Phys. B, 2020, 29(5): 050306.
[12] Quantum fluctuation of entanglement for accelerated two-level detectors
Si-Xuan Zhang(张思轩), Tong-Hua Liu(刘统华), Shuo Cao(曹硕), Yu-Ting Liu(刘宇婷), Shuai-Bo Geng(耿率博), Yu-Jie Lian(连禹杰). Chin. Phys. B, 2020, 29(5): 050402.
[13] Surface potential-based analytical model for InGaZnO thin-film transistors with independent dual-gates
Yi-Ni He(何伊妮), Lian-Wen Deng(邓联文), Ting Qin(覃婷), Cong-Wei Liao(廖聪维), Heng Luo(罗衡), Sheng-Xiang Huang(黄生祥). Chin. Phys. B, 2020, 29(4): 047102.
[14] Ramsey-coherent population trapping Cs atomic clock based on lin||lin optical pumping with dispersion detection
Peng-Fei Cheng(程鹏飞), Jian-Wei Zhang(张建伟), Li-Jun Wang(王力军). Chin. Phys. B, 2019, 28(7): 070601.
[15] Error-detected single-photon quantum routing using a quantum dot and a double-sided microcavity system
A-Peng Liu(刘阿鹏), Liu-Yong Cheng(程留永), Qi Guo(郭奇), Shi-Lei Su(苏石磊), Hong-Fu Wang(王洪福), Shou Zhang(张寿). Chin. Phys. B, 2019, 28(2): 020301.
No Suggested Reading articles found!