|
|
Semi-analytical model for quasi-double-layer surface electrode ion traps |
Jian Zhang(张见)1, Shuming Chen(陈书明)1,2, Yaohua Wang(王耀华)1 |
1 College of Computer, National University of Defense Technology, Changsha 410073, China; 2 State Key Laboratory of High Performance Computing, National University of Defense Technology, Changsha 410073, China |
|
|
Abstract To realize scale quantum processors, the surface-electrode ion trap is an effective scaling approach, including single-layer, double-layer, and quasi-double-layer traps. To calculate critical trap parameters such as the trap center and trap depth, the finite element method (FEM) simulation was widely used, however, it is always time consuming. Moreover, the FEM simulation is also incapable of exhibiting the direct relationship between the geometry dimension and these parameters. To eliminate the problems above, House and Madsen et al. have respectively provided analytic models for single-layer traps and double-layer traps. In this paper, we propose a semi-analytical model for quasi-double-layer traps. This model can be applied to calculate the important parameters above of the ion trap in the trap design process. With this model, we can quickly and precisely find the optimum geometry design for trap electrodes in various cases.
|
Received: 30 May 2016
Revised: 19 July 2016
Accepted manuscript online:
|
PACS:
|
37.10.Gh
|
(Atom traps and guides)
|
|
37.10.Ty
|
(Ion trapping)
|
|
Corresponding Authors:
Shuming Chen, Yaohua Wang
E-mail: smchen@nudt.edu.cn;nudtyh@gmail.com
|
Cite this article:
Jian Zhang(张见), Shuming Chen(陈书明), Yaohua Wang(王耀华) Semi-analytical model for quasi-double-layer surface electrode ion traps 2016 Chin. Phys. B 25 113701
|
[1] |
Paul W 1990 Rev. Mod. Phys. 62 531
|
[2] |
Monroe C and Wineland D J 2008 Sci. Am. 299 64
|
[3] |
Monroe C and Kim J 2013 Science 339 1164
|
[4] |
Chiaverini J, Blakestad R B, Britton J, Jost J D, Langer C, Leibfried D, Ozeri R and Wineland D J 2005 Quant. Inf. Comp. 5 419
|
[5] |
Pearson C E, Leibrandt D R, Bakr W S, Mallard W J, Brown K R and Chuang I L 2005 Phys. Rev. A 73 032307
|
[6] |
Seidelin S, Chiaverini J, Reichle R, Bollinger J J, Leibfried D, Britton J, Wesenberg J H, Blakestad R B, Epstein R J, Hume D B, Itano W M, Jost J D, Langer C, Ozeri R, Shiga N and Wineland D J 2006 Phys. Rev. Lett. 96 253003
|
[7] |
Brown K R, Clark R J, Labaziewicz J, Richerme P, Leibrandt D R and Chuang I L 2007 Phys. Rev. A 75 015401
|
[8] |
http://www.quantum.gatech.edu/trapOverview.shtml
|
[9] |
Chen L, Wan W, Xie Y, Zhou F and Feng M 2012 Chin. Phys. Lett. 29 033701
|
[10] |
Zhang J, Chen S M and Liu W 2014 Acta Phys. Sin. 63 060303(in Chinese)
|
[11] |
Guise N D, Fallek S D, Stevens K E, Brown K R, Volin C, Harter A W, Amini J M, Higashi R E, Lu S T, Chanhvongsak H M, Nguyen T A, Marcus M S, Ohnstein T R and Youngner D W 2015 J. Appl. Phys. 117 174901
|
[12] |
Amini1 J M, Uys H, Wesenberg J H, Seidelin S, Britton J, Bollinger J J, Leibfried D, Ospelkaus C, VanDevender A P and Wineland D J 2010 New J. Phys. 12 033031
|
[13] |
Wang S X, Labaziewicz J, Ge Y, Shewmon R and Chuang I L 2010 Phys. Rev. A 81 062332
|
[14] |
Ospelkaus C, Warring U, Colombe Y, Brown K R, Amini J M, Leibfried D and Wineland D J 2011 Nature 476 181
|
[15] |
Chen L, Wan W, Xie Y, Wu H Y, Zhou F and Feng M 2013 Chin. Phys. Lett. 30 013702
|
[16] |
Mount E, Baek SY, Blain M, Stick D, Gaultney D, Crain S, Noek R, Kim T, Maunz P and Kim J 2013 New J. Phys. 15 093018
|
[17] |
Shu G, Vittorini G, Buikema A, Nichols C S, Volin C, Stick D and Brown K R 2014 Phys. Rev. A 89 062308
|
[18] |
Wilson A C, Colombe Y, Brown K R, Knill E, Leibfried D and Wineland D J 2014 Nature 512 57
|
[19] |
Herold C D, Fallek S D, Merrill J T, Meier A M, Brown K R, Volin C E and Amini J M 2016 New J. Phys. 18 023048
|
[20] |
Rowej M A, Benkish A, Demarco B, Leibfried D, Meyer V, Beall J, Britton J, Hughes J, Itano W M, Jelenkovic B, Langer C, Rosenband T and Wineland D J 2002 Quantum Inf. Comput. 2 257
|
[21] |
Stick D, Hensinger W, Olmschenk S, Madsen M J, Schwab K and Monroe C 2006 Nat. Phys. 2 36
|
[22] |
Huber G, Deuschle T, Schnitzler W, Reichle R, Singer K and Kaler F S 2008 New J. Phys. 10 013004
|
[23] |
Schulz S, Poschinger U, Ziesel F and Kaler F S 2008 New J. Phys. 10 2039
|
[24] |
Jakob R and Vladan V 2011 Atom Chips (Weinheim:Wiley-VCH) pp. 395-420
|
[25] |
Cho D D, Hong S, Lee M and Kim T 2015 Micro Nano Lett. 3 1
|
[26] |
Wilpers G, See P, Gill P and Sinclair A G 2012 Nat. Nanotechnol. 7 9
|
[27] |
See P, Wilpers G, Gill P and Sinclair A G 2013 J. Microelectromech. S. 22 1180
|
[28] |
Leibrandt D R, Labaziewicz J, Clark R J and Chuang I L 2011 Quant. Inf. Comp. 9 901
|
[29] |
Leibrandt D R 2009 Integrated Chips and Optical Cavities for Trapped Ion Quantum Information Processing (Ph. D. dissertation) (Cambridge:Masschusetts Institute of Technology)
|
[30] |
House M G 2008 Phys. Rev. A 78 033402
|
[31] |
Madsen M J, Hensinger W K, Stick D, Rabchuk J A and Monroe C 2004 Appl. Phys. B 78 639
|
[32] |
Dehmelt H G 1967 Radiofrequency Spectroscopy of Stored Ions I:Storage (New York:Academic Press) pp. 53-72
|
[33] |
Roman S 2010 New J. Phys. 12 023038
|
[34] |
Reichle R, Leibfried D, Blakestad R B, Britton J, Jost J D, Knill E, Langer C, Ozeri R, Seidelin S and Wineland D J 2006 Fortschr. Phys. 54 666
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|