Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(11): 110303    DOI: 10.1088/1674-1056/25/11/110303
GENERAL Prev   Next  

Amplifying and freezing of quantum coherence using weak measurement and quantum measurement reversal

Lian-Wu Yang(杨连武)1,2, Yun-Jie Xia(夏云杰)1
1 College of Physics and Electronics, Shandong Normal University, Jinan 250014, China;
2 School of Physics, Shandong University, Jinan 250100, China
Abstract  We analyze universal conditions where the l1 norm and relative entropy of coherence are amplified and frozen under identical bit-flip channels; that is, using pre-measurements (quantum weak measurements or quantum measurement reversals) on the systems before undergoing local bit-flip channels. With the option of quantum weak measurements or quantum measurement reversals, the measurement strength and the success probability are all determined by the initial state of the quantum system.
Keywords:  frozen coherence      weak measurement      quantum measurement reversal  
Received:  26 April 2016      Revised:  21 July 2016      Accepted manuscript online: 
PACS:  03.65.Ta (Foundations of quantum mechanics; measurement theory)  
  03.65.Yz (Decoherence; open systems; quantum statistical methods)  
  03.67.Pp (Quantum error correction and other methods for protection against decoherence)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11204156, 61178012, 11304179, and 11247240) and the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20133705110001).
Corresponding Authors:  Yun-Jie Xia     E-mail:  yjxia@mail.qfnu.edu.cn

Cite this article: 

Lian-Wu Yang(杨连武), Yun-Jie Xia(夏云杰) Amplifying and freezing of quantum coherence using weak measurement and quantum measurement reversal 2016 Chin. Phys. B 25 110303

[1] Nielsen M A and Chuang I L 2000 Quantum Computation and Quantum Information (Cambridge:Cambridge University Press)
[2] Giovannetti V, Lloyd S and Maccone L 2004 Science 306 1330
[3] Demkowicz-Dobrzański R and Maccone L 2014 Phys. Rev. Lett. 113 250801
[4] Giovannetti V, Lloyd S and Maccone L 2011 Nat. Photonics 5 222
[5] Xiang G Y and Guo G C 2013 Chin. Phys. B 22 110601
[6] Asbóth J K, Calsamiglia J and Ritsch H 2005 Phys. Rev. Lett. 94 173602
[7] Streltsov A, Singh U, Dhar H S, Bera M N and Adesso G 2015 Phys. Rev. Lett. 115 020403
[8] Ford L H 1978 Proc. R. Soc. A 364 227
[9] Correa L A, Palao J P, Alonso D and Adesso G 2014 Sci. Rep. 4 3949
[10] Roßnagel J, Abah O, Schmidt-Kaler F, Singer K and Lutz E 2014 Phys. Rev. Lett. 112 030602
[11] Lostaglio M, Jennings D and Rudolph T 2015 Nat. Commun. 6 6383
[12] Åberg J 2014 Phys. Rev. Lett. 113 150402
[13] Plenio M B and Huelga S F 2008 New J. Phys. 10 113019
[14] Rebentrost P, Mohseni M and Aspuru-Guzik A 2009 J. Phys. Chem. B 113 9942
[15] Li C M, Lambert N, Chen Y N, Chen G Y and Nori F 2012 Sci. Rep. 2 885
[16] Huelga S F and Plenio M B 2013 Contemp. Phys. 54 181
[17] Baumgratz T, Cramer M and Plenio M B 2014 Phys. Rev. Lett. 113 140401
[18] Levi F and Mintert F 2014 New J. Phys. 16 033007
[19] Marvian I and Spekkens R W 2013 New J. Phys. 15 033001
[20] Girolami D 2014 Phys. Rev. Lett. 113 170401
[21] Marvian I and Spekkens R W 2014 Nat. Commun. 5 3821
[22] Streltsov A, Singh U, Dhar H S, Bera M N and Adesso G 2015 Phys. Rev. Lett. 115 020403
[23] Bromley T R, Cianciaruso M and Adesso G 2015 Phys. Rev. Lett. 114 210401
[24] Alexander N K and Kyle K 2010 Phys. Rev. A 81 040103(R)
[25] Kim Y S, Lee J C, Kwon O and Kim Y H 2012 Nat. Phys. 8 117
[26] Yang G, Lian B W and Nie M 2016 Chin. Phys. B 25 080310
[27] Horodecki R and Horodecki M 1996 Phys. Rev. A 54 1838
[28] Yu X D, Zhang D J, Liu C L and Tong D M 2016 arXiv:1603.01124v1.[quant-ph]
[29] Wootters W K 1998 Phys. Rev. Lett. 80 2245
[30] Katz N, Neeley M, Ansmann M, Bialczak R C, Hofheinz M, Lucero E, Connell A, Wang H, Cleland A N, Martinis J M and Korotkov A N 2008 Phys. Rev. Lett. 101 200401
[31] Xu X Y, Kedem Y, Sun K, Vaidman L, Li C F and Guo G C 2013 Phys. Rev. Lett. 111 033604
[32] Man Z X, Xia Y J and An N B 2012 Phys. Rev. A 86 012325
[33] Han W, Zhang Y J, Yan W B and Xia Y J 2014 Chin. Phys. B 23 110304
[1] Improving the teleportation of quantum Fisher information under non-Markovian environment
Yan-Ling Li(李艳玲), Yi-Bo Zeng(曾艺博), Lin Yao(姚林), and Xing Xiao(肖兴). Chin. Phys. B, 2023, 32(1): 010303.
[2] Increasing the efficiency of post-selection in direct measurement of the quantum wave function
Yong-Li Wen(温永立), Shanchao Zhang(张善超), Hui Yan(颜辉), and Shi-Liang Zhu(朱诗亮). Chin. Phys. B, 2022, 31(3): 034206.
[3] Parameter accuracy analysis of weak-value amplification process in the presence of noise
Jiangdong Qiu(邱疆冬), Zhaoxue Li(李兆雪), Linguo Xie(谢林果), Lan Luo(罗兰), Yu He(何宇), Changliang Ren(任昌亮), Zhiyou Zhang(张志友), and Jinglei Du(杜惊雷). Chin. Phys. B, 2021, 30(6): 064216.
[4] Scheme to measure the expectation value of a physical quantity in weak coupling regime
Jie Zhang(张杰), Chun-Wang Wu(吴春旺), Yi Xie(谢艺), Wei Wu(吴伟), and Ping-Xing Chen(陈平形). Chin. Phys. B, 2021, 30(3): 033201.
[5] Dense coding capacity in correlated noisy channels with weak measurement
Jin-Kai Li(李进开), Kai Xu(徐凯), and Guo-Feng Zhang(张国锋). Chin. Phys. B, 2021, 30(11): 110302.
[6] Entropy squeezing for a V-type three-level atom interacting with a single-mode field and passing through the amplitude damping channel with weak measurement
Cui-Yu Zhang(张翠玉) and Mao-Fa Fang(方卯发). Chin. Phys. B, 2021, 30(1): 010303.
[7] Reversion of weak-measured quantum entanglement state
Shao-Jiang Du(杜少将), Yonggang Peng(彭勇刚), Hai-Ran Feng(冯海冉), Feng Han(韩峰), Lian-Wu Yang(杨连武), Yu-Jun Zheng(郑雨军). Chin. Phys. B, 2020, 29(7): 074202.
[8] Extended validity of weak measurement
Jiangdong Qiu(邱疆冬), Changliang Ren(任昌亮), Zhaoxue Li(李兆雪), Linguo Xie(谢林果), Yu He(何宇), Zhiyou Zhang(张志友), Jinglei Du(杜惊雷). Chin. Phys. B, 2020, 29(6): 064214.
[9] Effect of weak measurement on quantum correlations
L Jebli, M Amzioug, S E Ennadifi, N Habiballah, and M Nassik$. Chin. Phys. B, 2020, 29(11): 110301.
[10] Protecting the entanglement of two-qubit over quantum channels with memory via weak measurement and quantum measurement reversal
Mei-Jiao Wang(王美姣), Yun-Jie Xia(夏云杰), Yang Yang(杨阳), Liao-Zhen Cao(曹连振), Qin-Wei Zhang(张钦伟), Ying-De Li(李英德), and Jia-Qiang Zhao(赵加强). Chin. Phys. B, 2020, 29(11): 110307.
[11] Bidirectional multi-qubit quantum teleportation in noisy channel aided with weak measurement
Guang Yang(杨光), Bao-Wang Lian(廉保旺), Min Nie(聂敏), Jiao Jin(金娇). Chin. Phys. B, 2017, 26(4): 040305.
[12] Decoherence suppression for three-qubit W-like state using weak measurement and iteration method
Guang Yang(杨光), Bao-Wang Lian(廉保旺), Min Nie(聂敏). Chin. Phys. B, 2016, 25(8): 080310.
[13] Weak value amplification via second-order correlated technique
Ting Cui(崔挺), Jing-Zheng Huang(黄靖正), Xiang Liu(刘翔), Gui-Hua Zeng(曾贵华). Chin. Phys. B, 2016, 25(2): 020301.
[14] Optimizing quantum correlation dynamics by weak measurement in dissipative environment
Du Shao-Jiang (杜少将), Xia Yun-Jie (夏云杰), Duan De-Yang (段德洋), Zhang Lu (张路), Gao Qiang (高强). Chin. Phys. B, 2015, 24(4): 044205.
[15] Dynamics of super-quantum discord and direct control with weak measurement in open quantum system
Ji Ying-Hua (嵇英华). Chin. Phys. B, 2015, 24(12): 120302.
No Suggested Reading articles found!