Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(11): 110302    DOI: 10.1088/1674-1056/25/11/110302
GENERAL Prev   Next  

General coarsened measurement references for revelation of a classical world

Dong Xie(谢东)1, Chunling Xu(徐春玲)1, Anmin Wang(王安民)2
1 National Earthquake Infrastructure Service, China Earthquake Administration, Beijing 100045, China;
2 Institute of High Energy Physics, Chinese Academic Sciences, Beijing 100049, China;
3 Peking University, Beijing 100871, China;
4 Department of Physics, University of Texas at Dallas, Richardson, Texas, USA
Abstract  It has been found that for a fixed degree of fuzziness in the coarsened references of measurements, the quantum-to-classical transition can be observed independent of the macroscopicity of the quantum state. We explore a general situation that the degree of fuzziness can change with the rotation angle between two states (different rotation angles represent different references). The fuzziness of reference comes from two kinds of fuzziness:the Hamiltonian (rotation frequency) and the timing (rotation time). For the fuzziness of the Hamiltonian alone, the degree of fuzziness for the reference will change with the rotation angle between two states, and the quantum effects can still be observed with any degree of fuzziness of Hamiltonian. For the fuzziness of timing, the degree of the coarsening reference is unchanged with the rotation angle. During the rotation of the measurement axis, the decoherence environment can also help the classical-to-quantum transition due to changing the direction of the measurement axis.
Keywords:  coarsened references      quantum-to-classical transition      decoherence  
Received:  17 June 2016      Revised:  13 July 2016      Accepted manuscript online: 
PACS:  03.65.Ta (Foundations of quantum mechanics; measurement theory)  
  03.65.Ud (Entanglement and quantum nonlocality)  
  03.67.Mn (Entanglement measures, witnesses, and other characterizations)  
  42.50.Dv (Quantum state engineering and measurements)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11375168).
Corresponding Authors:  Dong Xie     E-mail:  xiedong@mail.ustc.edu.cn

Cite this article: 

Dong Xie(谢东), Chunling Xu(徐春玲), Anmin Wang(王安民) General coarsened measurement references for revelation of a classical world 2016 Chin. Phys. B 25 110302

[1] Schlosshauer M 2005 Rev. Mod. Phys. 76 1267
[2] Zurek W H 2003 Rev. Mod. Phys. 75 715
[3] Kofler J and Brukner C 2007 Phys. Rev. Lett. 99 180403
[4] Raeisi S, Sekatski P and Simon C 2011 Phys. Rev. Lett. 107 250401
[5] Jeong H, Paternostro M and Ralph T C 2009 Phys. Rev. Lett. 102 060403
[6] Lim Y, Paternostro M, Kang M, Lee J and Jeong H 2012 Phys. Rev. A 85 062112
[7] Kofler J and Brukner C 2008 Phys. Rev. Lett. 101 090403
[8] Ramanathan R, Paterek T, Kay A, Kurzyński P and Kaszlikowski D 2011 Phys. Rev. Lett. 107 060405
[9] Buzek V, Kim M S and Kim M G 1995 J. Korean Phys. Soc. 28 123
[10] Jeong H and Ralph T C 2006 Phys. Rev. Lett. 97 100401
[11] Caldara P, Cognata A La, Valent I D and Spagnolo B 2011 Int. J. Quantum. Inf. 9 119
[12] Kast D and Ankerhold J 2013 Phys. Rev. Lett. 110 010402
[13] Ra Y S, Tichy M C, Lim H T, Kwon O, Mintert F, Buchleitner A and Kim Y H 2013 Proc. Natl. Acad. Sci. USA 110 1227
[14] Jeong H, Lim Y and Kim M S 2014 Phys. Rev. Lett. 112 010402
[15] Bell J S 1964 Physics 1 195
[16] Clauser J F, Horne M A, Shimony A and Holt R A 1969 Phys. Rev. Lett. 23 880
[17] Cywiński L, Lutchyn R M, Nave C P and Sarma S D 2008 Phys. Rev. B 77 174509
[18] Xie D and Wang A M 2013 Mod. Phys. Lett. B 27 1350133
[19] Chen J J, Wu C F, Kwek L C and Oh C H 2008 Phys. Rev. A 78 032107
[20] Lanyon B P, Zwerger M, Jurcevic P, Hempel C, Dür W, Briegel H J, Blatt R and Roos C F 2014 Phys. Rev. Lett. 112 100403
[21] Yu K R, Zi L F and Hao S Z 2016 Chin. Phys. B 25 010303
[1] Steering quantum nonlocalities of quantum dot system suffering from decoherence
Huan Yang(杨欢), Ling-Ling Xing(邢玲玲), Zhi-Yong Ding(丁智勇), Gang Zhang(张刚), and Liu Ye(叶柳). Chin. Phys. B, 2022, 31(9): 090302.
[2] Nonlocal advantage of quantum coherence and entanglement of two spins under intrinsic decoherence
Bao-Min Li(李保民), Ming-Liang Hu(胡明亮), and Heng Fan(范桁). Chin. Phys. B, 2021, 30(7): 070307.
[3] Quantum to classical transition induced by a classically small influence
Wen-Lei Zhao(赵文垒), Quanlin Jie(揭泉林). Chin. Phys. B, 2020, 29(8): 080302.
[4] Geometric phase of an open double-quantum-dot system detected by a quantum point contact
Qian Du(杜倩), Kang Lan(蓝康), Yan-Hui Zhang(张延惠), Lu-Jing Jiang(姜露静). Chin. Phys. B, 2020, 29(3): 030302.
[5] The effect of phase fluctuation and beam splitter fluctuation on two-photon quantum random walk
Zijing Zhang(张子静), Feng Wang(王峰), Jie Song(宋杰), Yuan Zhao(赵远). Chin. Phys. B, 2020, 29(2): 020503.
[6] Dipole-dipole interactions enhance non-Markovianity and protect information against dissipation
Munsif Jan, Xiao-Ye Xu(许小冶), Qin-Qin Wang(王琴琴), Zhe Chen(陈哲), Yong-Jian Han(韩永建), Chuan-Feng Li(李传锋), Guang-Can Guo(郭光灿). Chin. Phys. B, 2019, 28(9): 090303.
[7] A primary model of decoherence in neuronal microtubules based on the interaction Hamiltonian between microtubules and plasmon in neurons
Zuoxian Xiang(向左鲜), Chuanxiang Tang(唐传祥), Lixin Yan(颜立新). Chin. Phys. B, 2019, 28(4): 048701.
[8] Physics of quantum coherence in spin systems
Maimaitiyiming Tusun(麦麦提依明·吐孙), Xing Rong(荣星), Jiangfeng Du(杜江峰). Chin. Phys. B, 2019, 28(2): 024204.
[9] Boundary states for entanglement robustness under dephasing and bit flip channels
Hong-Mei Li(李红梅), Miao-Di Guo(郭苗迪), Rui Zhang(张锐), Xue-Mei Su(苏雪梅). Chin. Phys. B, 2019, 28(10): 100302.
[10] Enhancing von Neumann entropy by chaos in spin-orbit entanglement
Chen-Rong Liu(刘郴荣), Pei Yu(喻佩), Xian-Zhang Chen(陈宪章), Hong-Ya Xu(徐洪亚), Liang Huang(黄亮), Ying-Cheng Lai(来颖诚). Chin. Phys. B, 2019, 28(10): 100501.
[11] Decoherence for a two-qubit system in a spin-chain environment
Yang Yang(杨阳), An-Min Wang(王安民), Lian-Zhen Cao(曹连振), Jia-Qiang Zhao(赵加强), Huai-Xin Lu(逯怀新). Chin. Phys. B, 2018, 27(9): 090302.
[12] Classical-driving-assisted coherence dynamics and its conservation
De-Ying Gao(高德营), Qiang Gao(高强), Yun-Jie Xia(夏云杰). Chin. Phys. B, 2018, 27(6): 060304.
[13] Decoherence of macroscopic objects from relativistic effect
Guo-Hui Dong(董国慧), Yu-Han Ma(马宇翰), Jing-Fu Chen(陈劲夫), Xin Wang(王欣), Chang-Pu Sun(孙昌璞). Chin. Phys. B, 2018, 27(10): 100301.
[14] Non-Gaussianity dynamics of two-mode squeezed number states subject to different types of noise based on cumulant theory
Shaohua Xiang(向少华), Xixiang Zhu(朱喜香), Kehui Song(宋克慧). Chin. Phys. B, 2018, 27(10): 100305.
[15] Superconducting phase qubits with shadow-evaporated Josephson junctions
Fei-Fan Su(宿非凡), Wei-Yang Liu(刘伟洋), Hui-Kai Xu(徐晖凯), Hui Deng(邓辉), Zhi-Yuan Li(李志远), Ye Tian(田野), Xiao-Bo Zhu(朱晓波), Dong-Ning Zheng(郑东宁), Li Lv(吕力), Shi-Ping Zhao(赵士平). Chin. Phys. B, 2017, 26(6): 060308.
No Suggested Reading articles found!