Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(10): 108802    DOI: 10.1088/1674-1056/25/10/108802
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Device simulation of lead-free CH3NH3SnI3 perovskite solar cells with high efficiency

Hui-Jing Du(杜会静), Wei-Chao Wang(王韦超), Jian-Zhuo Zhu(朱键卓)
College of Science, Yanshan University, Qinhuangdao 066004, China
Abstract  The lead-free perovskite solar cells (PSCs) have drawn a great deal of research interest due to the Pb toxicity of the lead halide perovskite. CH3NH3SnI3 is a viable alternative to CH3NH3PbX3, because it has a narrower band gap of 1.3 eV and a wider visible absorption spectrum than the lead halide perovskite. The progress of fabricating tin iodide PSCs with good stability has stimulated the studies of these CH3NH3SnI3 based cells greatly. In the paper, we study the influences of various parameters on the solar cell performance through theoretical analysis and device simulation. It is found in the simulation that the solar cell performance can be improved to some extent by adjusting the doping concentration of the perovskite absorption layer and the electron affinity of the buffer and HTM, while the reduction of the defect density of the perovskite absorption layer significantly improves the cell performance. By further optimizing the parameters of the doping concentration (1.3×1016 cm-3) and the defect density (1×1015 cm-3) of perovskite absorption layer, and the electron affinity of buffer (4.0 eV) and HTM (2.6 eV), we finally obtain some encouraging results of the Jsc of 31.59 mA/cm2, Voc of 0.92 V, FF of 79.99%, and PCE of 23.36%. The results show that the lead-free CH3NH3SnI3 PSC is a potential environmentally friendly solar cell with high efficiency. Improving the Sn2+ stability and reducing the defect density of CH3NH3SnI3 are key issues for the future research, which can be solved by improving the fabrication and encapsulation process of the cell.
Keywords:  CH3NH3SnI3      perovskite solar cells      device simulation      high efficiency  
Received:  28 March 2016      Revised:  21 June 2016      Accepted manuscript online: 
PACS:  88.40.H- (Solar cells (photovoltaics))  
  88.40.hj (Efficiency and performance of solar cells)  
  88.40.fc (Modeling and analysis)  
Fund: Project supported by the Graduate Student Education Teaching Reform Project, China (Grant No. JG201512) and the Young Teachers Research Project of Yanshan University, China (Grant No. 13LGB028).
Corresponding Authors:  Jian-Zhuo Zhu     E-mail:  zhujz@ysu.edu.cn

Cite this article: 

Hui-Jing Du(杜会静), Wei-Chao Wang(王韦超), Jian-Zhuo Zhu(朱键卓) Device simulation of lead-free CH3NH3SnI3 perovskite solar cells with high efficiency 2016 Chin. Phys. B 25 108802

[1] Kazim S, Nazeeruddin M K, Gratzel M and Ahmad S 2014 Angew. Chem. Int. Ed. 53 2812
[2] Lotsch B V 2014 Angew. Chem., Int. Ed. 53 635
[3] Wei Z H, Chen H N, Yan K Y and Yang S H 2014 Angew. Chem. Int. Ed. 53 13239
[4] Kojima A, Teshima K, Shirai Y and Miyasaka T 2009 J. Am. Chem. Soc. 131 6050
[5] NRELchart2016http:www.nrel.govncpvimagesefficiency chart.jpg
[6] Stoumpos C C, Malliakas C D and Kanatzidis M G 2013 Inorg. Chem. 52 9019
[7] Umari P, Mosconi E and De Angelis F 2014 Sci. Rep. 4 4467
[8] Chen Q Y, Huang Y, Huang P R, Ma T, Cao C and He Y 2016 Chin. Phys. B 25 027104
[9] Noel N K, Stranks S D, Abate A, Wehrenfennig C, Guarnera S, Haghighirad A A, Sadhanala A, Eperon G E, Johnston M B, Petrozza A M, Herz L M and Snaitha H J 2014 Energy Environ. Sci. 9 3061
[10] Hao F, Stoumpos C C, Cao D H, Chang R P H and Kanatzidis M G 2014 Nat. Photon. 8 489
[11] Hao F, Stoumpos C C, Guo P, Zhou N, Marks T J, Chang R P H and Kanatzidis M G 2015 J. Am. Chem. Soc. 137 11445
[12] Koh T M, Krishnamoorthy T, Yantara N, Shi C, Leong W L, Boix P P, Grimsdale A C, Mhaisalkar S G and Mathews N 2015 J. Mater. Chem. A. 3 14996
[13] Marshall K P, Walton R I and Hatton R A 2015 J. Mater. Chem. A 3 11631
[14] Kumar M H, Dharani S, Leong W L, Boix P P, Prabhakar R R, Baikie T, Shi C, Ding H, Ramesh R, Asta M, Graetzel M, Mhaisalkar S G and Mathews N 2014 Adv. Mater. 26 7122
[15] Lang L, Yang J H, Liu H R, Xiang H J and Gong X G 2014 Phys. Lett. A 378 290
[16] Zhu J Z Qi L H Du H J and Chai Y C 2015 Chin. Phys. B 24 108501
[17] Minemoto T and Murata M 2015 Sol. Energy Mat. Sol. Cells. 133 8
[18] Kemp K W, Labelle A J, Thon S M, Ip A H, Kramer I J, Hoogland S and Sargent E H 2013 Adv. Energy Mater. 3 917
[19] Minemoto T, and Murata M 2014 J. Appl. Phys. 116 054505
[20] Minemoto T, and Murata M 2014 Curr. Appl. Phys. 14 1428
[21] Liu F, Zhu J, Wei J, Li Y, Lv M, Yang S, Zhang B, Yao J and Dai S 2014 Appl. Phys. Lett. 104 253508
[22] Hao F Stoumpos C C Chang R P H and Kanatzidis M G 2014 J. Am. Chem. Soc. 136 8094
[23] Scheer R 2009 J. Appl. Phys. 105 104505
[24] Ball J M Lee M M, Hey A and Snaith H J 2013 Energ. Environ. Sci. 6 1739
[25] Xing G C, Mathews N, Sun S Y, Lim S S, Lam Y M, Grätzel M, Mhaisalkar S and Sum T C 2013 Science 342 344
[26] Hall R N 1953 Proc. Phys. Soc. 24 221
[27] Shockley W and Read W T 1952 Phys. Rev. 87 835
[28] Kagan C R, Mitzi D B and Dimitrakopoulos C D 1999 Science 286 945
[29] Mitzi D B, Wang S, Feild C A, Chess C A and Guloy A M 1995 Science 267 1473
[30] Liu D Y, Gangishetty M K and Kelly T L 2014 J. Mater. Chem. A 2 19873
[31] Lee S J, Shin S S, Kim Y C, Kim D, Ahn T K, Noh J H, Seo J and Seok S I 2016 J. Am. Chem. Soc. 138 3974
[32] Bansode U, Naphade R, Game O, Agarkar S and Ogale S 2015 J. Phys. Chem. C 119 9177
[1] Improving efficiency of inverted perovskite solar cells via ethanolamine-doped PEDOT:PSS as hole transport layer
Zi-Jun Wang(王子君), Jia-Wen Li(李嘉文), Da-Yong Zhang(张大勇), Gen-Jie Yang(杨根杰), and Jun-Sheng Yu(于军胜). Chin. Phys. B, 2022, 31(8): 087802.
[2] Large aperture phase-coded diffractive lens for achromatic and 16° field-of-view imaging with high efficiency
Gu Ma(马顾), Peng-Lei Zheng(郑鹏磊), Zheng-Wen Hu(胡正文), Suo-Dong Ma(马锁冬), Feng Xu(许峰), Dong-Lin Pu(浦东林), and Qin-Hua Wang(王钦华). Chin. Phys. B, 2022, 31(7): 074210.
[3] Charge transfer modification of inverted planar perovskite solar cells by NiOx/Sr:NiOx bilayer hole transport layer
Qiaopeng Cui(崔翘鹏), Liang Zhao(赵亮), Xuewen Sun(孙学文), Qiannan Yao(姚倩楠), Sheng Huang(黄胜), Lei Zhu(朱磊), Yulong Zhao(赵宇龙), Jian Song(宋健), and Yinghuai Qiang(强颖怀). Chin. Phys. B, 2022, 31(3): 038801.
[4] Reveal the large open-circuit voltage deficit of all-inorganicCsPbIBr2 perovskite solar cells
Ying Hu(胡颖), Jiaping Wang(王家平), Peng Zhao(赵鹏), Zhenhua Lin(林珍华), Siyu Zhang(张思玉), Jie Su(苏杰), Miao Zhang(张苗), Jincheng Zhang(张进成), Jingjing Chang(常晶晶), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(3): 038804.
[5] Surface modulation of halide perovskite films for efficient and stable solar cells
Qinxuan Dai(戴沁煊), Chao Luo(骆超), Xianjin Wang(王显进), Feng Gao(高峰), Xiaole Jiang(姜晓乐), and Qing Zhao(赵清). Chin. Phys. B, 2022, 31(3): 037303.
[6] Nano Ag-enhanced photoelectric conversion efficiency in all-inorganic, hole-transporting-layer-free CsPbIBr2 perovskite solar cells
Youming Huang(黄友铭), Yizhi Wu(吴以治), Xiaoliang Xu(许小亮), Feifei Qin(秦飞飞), Shihan Zhang(张诗涵), Jiakai An(安嘉凯), Huijie Wang(王会杰), and Ling Liu(刘玲). Chin. Phys. B, 2022, 31(12): 128802.
[7] Could two-dimensional perovskites fundamentally solve the instability of perovskite photovoltaics
Luoran Chen(陈烙然), Hu Wang(王虎), and Yuchuan Shao(邵宇川). Chin. Phys. B, 2022, 31(11): 117803.
[8] Sputtered SnO2 as an interlayer for efficient semitransparent perovskite solar cells
Zheng Fang(方正), Liu Yang(杨柳), Yongbin Jin(靳永斌), Kaikai Liu(刘凯凯), Huiping Feng(酆辉平), Bingru Deng(邓冰如), Lingfang Zheng(郑玲芳), Changcai Cui(崔长彩), Chengbo Tian(田成波), Liqiang Xie(谢立强), Xipeng Xu(徐西鹏), and Zhanhua Wei(魏展画). Chin. Phys. B, 2022, 31(11): 118801.
[9] Recent advances of interface engineering in inverted perovskite solar cells
Shiqi Yu(余诗琪), Zhuang Xiong(熊壮), Zhenhan Wang(王振涵), Haitao Zhou(周海涛), Fei Ma(马飞), Zihan Qu(瞿子涵), Yang Zhao(赵洋), Xinbo Chu(楚新波), and Jingbi You(游经碧). Chin. Phys. B, 2022, 31(10): 107307.
[10] Device simulation of quasi-two-dimensional perovskite/silicon tandem solar cells towards 30%-efficiency
Xiao-Ping Xie(谢小平), Qian-Yu Bai(白倩玉), Gang Liu(刘刚), Peng Dong(董鹏), Da-Wei Liu(刘大伟), Yu-Feng Ni(倪玉凤), Chen-Bo Liu(刘晨波), He Xi(习鹤), Wei-Dong Zhu(朱卫东), Da-Zheng Chen(陈大正), and Chun-Fu Zhang(张春福). Chin. Phys. B, 2022, 31(10): 108801.
[11] Study on a novel vertical enhancement-mode Ga2O3 MOSFET with FINFET structure
Liangliang Guo(郭亮良), Yuming Zhang(张玉明), Suzhen Luan(栾苏珍), Rundi Qiao(乔润迪), and Renxu Jia(贾仁需). Chin. Phys. B, 2022, 31(1): 017304.
[12] Improved efficiency and stability of perovskite solar cells with molecular ameliorating of ZnO nanorod/perovskite interface and Mg-doping ZnO
Zhenyun Zhang(张振雲), Lei Xu(许磊), and Junjie Qi(齐俊杰). Chin. Phys. B, 2021, 30(3): 038801.
[13] Non-peripherally octaalkyl-substituted nickel phthalocyanines used as non-dopant hole transport materials in perovskite solar cells
Fei Qi(齐飞), Bo Wu(吴波), Junyuan Xu(徐俊源), Qian Chen(陈潜), Haiquan Shan(单海权), Jiaju Xu(许家驹), and Zong-Xiang Xu(许宗祥). Chin. Phys. B, 2021, 30(10): 108801.
[14] Two-step processed efficient perovskite solar cells via improving perovskite/PTAA interface using solvent engineering in PbI2 precursor
Cao-Yu Long(龙操玉), Ning Wang(王宁), Ke-Qing Huang(黄可卿), Heng-Yue Li(李恒月), Biao Liu(刘标), Jun-Liang Yang(阳军亮). Chin. Phys. B, 2020, 29(4): 048801.
[15] Effect of carrier mobility on performance of perovskite solar cells
Yi-Fan Gu(顾一帆), Hui-Jing Du(杜会静), Nan-Nan Li(李楠楠), Lei Yang(杨蕾), Chun-Yu Zhou(周春宇). Chin. Phys. B, 2019, 28(4): 048802.
No Suggested Reading articles found!