Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(7): 074210    DOI: 10.1088/1674-1056/ac560c
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Large aperture phase-coded diffractive lens for achromatic and 16° field-of-view imaging with high efficiency

Gu Ma(马顾)1,2, Peng-Lei Zheng(郑鹏磊)1,2, Zheng-Wen Hu(胡正文)1,2, Suo-Dong Ma(马锁冬)1,2,3, Feng Xu(许峰)1,2,†, Dong-Lin Pu(浦东林)1,2, and Qin-Hua Wang(王钦华)1,2,‡
1 School of Optoelectronic Science and Engineering and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215006, China;
2 Key Laboratory of Advanced Optical Manufacturing Technologies of Jiangsu Province and Key Laboratory of Modern Optical Technologies of Education Ministry of China, Soochow University, Suzhou 215006, China;
3 CAS Key Laboratory of Space Precision Measurement Technology, Xi'an 710119, China
Abstract  Diffractive lenses (DLs) can realize high-resolution imaging with light weight and compact size. Conventional DLs suffer large chromatic and off-axis aberrations, which significantly limits their practical applications. Although many achromatic methods have been proposed, most of them are used for designing small aperture DLs, which have low diffraction efficiencies. In the designing of diffractive achromatic lenses, increasing the aperture and improving the diffraction efficiency have become two of the most important design issues. Here, a novel phase-coded diffractive lens (PCDL) for achromatic imaging with a large aperture and high efficiency is proposed and demonstrated experimentally, and it also possesses wide field-of-view (FOV) imaging at the same time. The phase distribution of the conventional phase-type diffractive lens (DL) is coded with a cubic function to expand both the working bandwidth and the FOV of conventional DL. The proposed phase-type DL is fabricated by using the laser direct writing of grey-scale patterns for a PCDL of a diameter of 10 mm, a focal length of 100 mm, and a cubic phase coding parameter of 30π. Experimental results show that the working bandwidth and the FOV of the PCDL respectively reach 50 nm and 16° with over 8% focusing efficiency, which are in significant contrast to the counterparts of conventional DL and in good agreement with the theoretical predictions. This work provides a novel way for implementing the achromatic, wide FOV, and high-efficiency imaging with large aperture DL.
Keywords:  achromatic imaging      diffractive lens      phase coding      large aperture      high efficiency  
Received:  09 December 2021      Revised:  20 January 2022      Accepted manuscript online:  17 February 2022
PACS:  42.79.Bh (Lenses, prisms and mirrors)  
  42.25.Fx (Diffraction and scattering)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61775154), the Natural Science Foundation of the Jiangsu Higher Education Institutions, China (Grant No. 18KJB140015), the Priority Academic Program Development of Jiangsu Higher Education Institutions, China, and the Open Research Fund of CAS Key Laboratory of Space Precision Measurement Technology, China (Grant No. SPMT2021001).
Corresponding Authors:  Feng Xu, Qin-Hua Wang     E-mail:  xf750617@suda.edu.cn;chinhua.wang@suda.edu.cn

Cite this article: 

Gu Ma(马顾), Peng-Lei Zheng(郑鹏磊), Zheng-Wen Hu(胡正文), Suo-Dong Ma(马锁冬), Feng Xu(许峰), Dong-Lin Pu(浦东林), and Qin-Hua Wang(王钦华) Large aperture phase-coded diffractive lens for achromatic and 16° field-of-view imaging with high efficiency 2022 Chin. Phys. B 31 074210

[1] Hyde R A 1999 Appl. Opt. 38 4198
[2] Camper A, Ruchon T, Gauthier D, Gobert O and Auguste T 2014 Phys. Rev. A 89 043843
[3] Chu Y S, Yi M J, De Carlo F, Shen Q, Lee W K, Wu H J, Wang C L, Wang J Y, Liu C J, Wang C H, Wu S R, Chien C C, Hwu Y, Tkachuk A, Yun W, Feser M, Liang K S, Yang C S, Je J H and Margaritondo G 2008 Appl. Phys. Lett. 92 103119
[4] Chen Y T, Chen T Y, Yi J, Chu Y S, Lee W K, Wang C L, Kempson I M, Hwu Y, Gajdosik V and Margaritondo G 2011 Opt. Lett. 36 1269
[5] Wang Y X, Yun W B and Jacobsen C 2003 Nature 424 50
[6] Kipp L, Skibowski M, Johnson R L, Berndt R, Adelung R, Harm S and Seemann R 2001 Nature 414 184
[7] Anderson G 2005 Opt. Lett. 30 2976
[8] Anderson G and Tullson D 2007 Appl. Opt. 46 3706
[9] Furlan W D, Saavedra G and Monsoriu J A 2007 Opt. Lett. 32 2109
[10] Zhao X N, Xu F, Hu J P and Wang C H 2015 Opt. Express 23 16812
[11] Zhao X N, Hu J P, Lin Y, Xu F, Zhu X J, Pu D L, Chen L S and Wang C H 2016 Sci. Rep. 6 28319
[12] Zhao X N, Hu J P, Xu F, Zhu A J and Wang C H 2016 IEEE Photon. J. 8 6901208
[13] Sun W, Hu Y, Macdonnell D G, Kim J H, Weimer C and Baize R R 2017 Opt. Express 25 17356
[14] Li Y, Wang C, Zhao X, Xu F and Wang C 2018 Opt. Express 26 21141
[15] Mohammad N, Meem M, Shen B, Wang P and Menon R 2018 Sci. Rep. 8 2799
[16] Meem M, Banerji S, Pies C, Oberbiermann T, Majumder A, Sensale-Rodriguez B and Menon R 2020 Optica 7 252
[17] Doskolovich L L, Skidanov R V, Bezus E A, Ganchevskaya S V, Bykov D A and Kazanskiy N L 2020 Opt. Express 28 11705
[18] Dowski E R and Cathey 1995 Appl. Opt. 34 1859
[19] Zhang W Z, Ye Z, Zhao T Y, Chen Y P and Yu F H 2007 Opt. Express 15 1543
[20] Diaz F, Goudail F, Loiseaux B and Huignard J 2009 Opt. Lett. 34 2970
[21] Du H Y, Yi R G, Dong L Q, Liu M, Jia W, Zhao Y J, Liu X H, Hui M, Kong L Q and Chen X 2018 Appl. Opt. 57 3365
[22] Zhang Z Y, Guo C L, Wang R Q, Hu H X, Zhou X G, Liu T, Xue D L, Zhang X, Zhang F and Zhang X J 2017 Opt. Express 25 33676
[23] Wang Y L, Yang J F, Yin W T and Zhang Y 2008 SIAM J. Imaging Sci. 1 248
[1] Single-shot phase-shifting digital holography with a photon-sieve-filtering telescope
You Li(李优), Yao-Cun Li(李垚村), Jun-Yong Zhang(张军勇), Yan-Li Zhang(张艳丽), Xue-Mei Li(李雪梅). Chin. Phys. B, 2019, 28(8): 084205.
[2] Numerical analysis of a dual-pass pumping laser with weak absorption
Guang-Ju Zhang(张光举), Ma-Li Gong(巩马理), Wen-Qi Zhang(张文启). Chin. Phys. B, 2017, 26(5): 050203.
[3] High efficiency terahertz diffraction grating with trapezoidal elements
Yin-Zhong Wu(巫殷忠), Quan-Pin Fan(范全平), Qiang-Qiang Zhang(张强强), Lai Wei(魏来), Yong Chen(陈勇), Zu-Hua Yang(杨祖华), Lei-Feng Cao(曹磊峰). Chin. Phys. B, 2017, 26(12): 124203.
[4] Device simulation of lead-free CH3NH3SnI3 perovskite solar cells with high efficiency
Hui-Jing Du(杜会静), Wei-Chao Wang(王韦超), Jian-Zhuo Zhu(朱键卓). Chin. Phys. B, 2016, 25(10): 108802.
[5] Pure blue and white light electroluminescence in a multilayer organic light-emitting diode using a new blue emitter
Wei Na (魏娜), Guo Kun-Ping (郭坤平), Zhou Peng-Chao (周朋超), Yu Jian-Ning (于建宁), Wei Bin (魏斌), Zhang Jian-Hua (张建华). Chin. Phys. B, 2014, 23(7): 077802.
[6] High-efficiency S-band harmonic tuning GaN amplifier
Cao Meng-Yi (曹梦逸), Zhang Kai (张凯), Chen Yong-He (陈永和), Zhang Jin-Cheng (张进成), Ma Xiao-Hua (马晓华), Hao Yue (郝跃). Chin. Phys. B, 2014, 23(3): 037305.
[7] Efficient top-emitting white organic light emitting device with an extremely stable chromaticity and viewing-angle
Shao Ming (邵茗), Guo Xu (郭旭), Chen Shu-Fen (陈淑芬), Fan Qu-Li (范曲立), Huang Wei (黄维). Chin. Phys. B, 2012, 21(10): 108507.
[8] Compound diffractive telescope system: design, straylight analysis, and optical test
Yue Jin-Ying(岳巾英), Liu Hua(刘华), Lu Zhen-Wu(卢振武), Xu Wen-Bin(许文斌),Zhang Hu(张虎), Zhang Hong-Xin(张红鑫), and Liu Ying(刘英) . Chin. Phys. B, 2010, 19(1): 010702.
No Suggested Reading articles found!