|
|
Discord and entanglement in non-Markovian environments at finite temperatures |
Hong-Mei Zou(邹红梅), Mao-Fa Fang(方卯发) |
Key Laboratory of Low-dimensional Quantum Structures and Quantum Control of Ministry of Education, College of Physics and Information Science, Hunan Normal University, Changsha 410081, China |
|
|
Abstract The dynamic evolutions of the discord and entanglement of two atoms immersed in two independent Lorentzian reservoirs at zero and finite temperatures have been investigated by using the time-convolutionless master-equation method. Our results show that, nonzero temperature can induce the entanglement sudden death and accelerate the decays of discord and entanglement. The discord and the entanglement have different robustness for different initial states and their robustness may change under certain conditions. When both the non-Markovian effect and detuning are present simultaneously, due to the memory and feedback effect of non-Markovian reservoirs, the discord and entanglement can be effectively protected even at nonzero temperature by increasing the non-Markovian effect and the detuning.
|
Received: 30 July 2015
Revised: 20 October 2015
Accepted manuscript online:
|
PACS:
|
03.65.Yz
|
(Decoherence; open systems; quantum statistical methods)
|
|
03.67.-a
|
(Quantum information)
|
|
42.50.Pq
|
(Cavity quantum electrodynamics; micromasers)
|
|
Fund: Project supported by the Science and Technology Plan of Hunan Province, China (Grant No. 2010FJ3148), the National Natural Science Foundation of China (Grant No. 11374096), and the Doctoral Science Foundation of Hunan Normal University, China. |
Corresponding Authors:
Hong-Mei Zou
E-mail: zhmzc1997@126.com
|
Cite this article:
Hong-Mei Zou(邹红梅), Mao-Fa Fang(方卯发) Discord and entanglement in non-Markovian environments at finite temperatures 2016 Chin. Phys. B 25 090302
|
[1] |
Schrödinger E 1935 Naturwissenschaften. 23 807
|
[2] |
Nielsen M A and Chuang I L 2000 Quantum Computation and Quantum Information (Cambridge: Cambridge University Press)
|
[3] |
Bouwmeester D, Pan J W, Mattle K, Eibl M, Weinfurter H and Zeilinger A 1997 Nature 390 575
|
[4] |
Cirac J I and Zoller P 1995 Phys. Rev. Lett. 74 4091
|
[5] |
Blinov B B, Moehring D L, Duan L M and Monroe C 2004 Nature 428 153
|
[6] |
Haroche S and Raimond J M 2006 Exploring the Quantum: Atoms, Cavities, and Photons (Oxford: Oxford University Press)
|
[7] |
Yu T and Eberly J H 2004 Phys. Rev. Lett. 93 140404
|
[8] |
Zou H M and Fang M F 2015 Quantum Inf. Process 14 2673
|
[9] |
Mazzola L, Maniscalco S, Piilo J, Suominen K A and Garraway B M 2009 Phys. Rev. A 79 042302
|
[10] |
Cao X F and Zheng H 2008 Phys. Rev. A 77 022320
|
[11] |
Ollivier H and Zurek W H 2001 Phys. Rev. Lett. 88 017901
|
[12] |
Zurek W H 2003 Phys. Rev. A 67 012320
|
[13] |
Datta A, Shaji A and Caves C M 2008 Phys. Rev. Lett. 100 050502
|
[14] |
Cui J and Fan H 2010 J. Phys. A: Math. Theor. 43 045305
|
[15] |
Dillenschneider R 2008 Phys. Rev. B 78 224413
|
[16] |
Sarandy M S 2009 Phys. Rev. A 80 022108
|
[17] |
Datta A 2009 Phys. Rev. A 80 052304
|
[18] |
Breuer H P and Petruccione F 2002 The Theory of Open Quantum Systems (Oxford: Oxford University Press)
|
[19] |
Rossi M A C, Benedetti C and Paris M G A 2014 Int. J. Quantum Inf. 12 1560003
|
[20] |
Helm J, Strunz W T, Rietzler S and Würflinger L E 2011 Phys. Rev. A 83 042103
|
[21] |
Crow D and Joynt R 2014 Phys. Rev. A 89 042123
|
[22] |
Witzel W M, Young K and Das Sarma S 2014 Phys. Rev. B 90 115431
|
[23] |
Benedetti C, Buscemi F, Bordone P and Paris M G A 2013 Phys. Rev. A 87 052328
|
[24] |
Benedetti C, Buscemi F, Bordone P and Paris M G A 2012 Int. J. Quantum Inf. 10 1241005
|
[25] |
Xu J S, Sun K, Li C F, Xu X Y, Guo G C, Andersson E and Franco R L 2013 Nat. Commun. 4 2851
|
[26] |
D'Arrigo A, Franco R Lo, Benenti G, Paladino E and Falci G 2014 Ann. Phys. 350 211
|
[27] |
Franco R Lo, D'Arrigo A, Falci G, Compagno G and Paladino E 2012 Phys. Scripta T147 014019
|
[28] |
Benedetti C, Paris M G A and Maniscalco S 2014 Phys. Rev. A 89 012114
|
[29] |
Bellomo B, Franco R L and Compagno G 2007 Phys. Rev. Lett. 99 160502
|
[30] |
Bellomo B, Franco R L and Compagno G 2008 Phys. Rev. A 77 032342
|
[31] |
Xiao X, Fang M F and Li Y L 2010 Opt. Commun. 283 3001
|
[32] |
Wang B, Xu Z Y, Chen Z Q and Feng M 2010 Phys. Rev. A 81 014101
|
[33] |
Werlang T, Souza S, Fanchini F F and Villas-Boas C J 2009 Phys. Rev. A 80 024103
|
[34] |
Ferraro E, Scala M, Migliore R and Napoli A 2009 Phys. Rev. A 80 042112
|
[35] |
Zou H M, Fang M F and Yang B Y 2013 Chin. Phys. B 22 120303
|
[36] |
Zou H M, Fang M F and Yang B Y 2015 Phys. Scr. 90 035104
|
[37] |
Wang C Z, Li C X, Nie L Y and Li J F 2011 J. Phys. B: At. Mol. Phys. 44 015503
|
[38] |
Wootter W K 1998 Phys. Rev. Lett. 80 2245
|
[39] |
Ferraro A, Aolita L, Cavalcanti D, Cucchietti F M and Acin A 2010 Phys. Rev. A 81 052318
|
[40] |
Raimond J M, Brune M and Haroche S 2001 Rev. Mod. Phys. 73 565
|
[41] |
Hagley E, Maitre X, Nogues G, Wunderlich C, Brune M, Raimond J M and Haroche S 1997 Phys. Rev. Lett. 79 1
|
[42] |
Kuhr S, Gleyzes S, Guerlin C, Bernu J, Hoff U B, Deléglise S, Osnaghi S, Brune M, Raimond J M, Haroche S, Jacques E, Bosland P and Visentin B 2007 Appl. Phys. Lett. 90 164101
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|