Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(9): 090302    DOI: 10.1088/1674-1056/25/9/090302
GENERAL Prev   Next  

Discord and entanglement in non-Markovian environments at finite temperatures

Hong-Mei Zou(邹红梅), Mao-Fa Fang(方卯发)
Key Laboratory of Low-dimensional Quantum Structures and Quantum Control of Ministry of Education, College of Physics and Information Science, Hunan Normal University, Changsha 410081, China
Abstract  The dynamic evolutions of the discord and entanglement of two atoms immersed in two independent Lorentzian reservoirs at zero and finite temperatures have been investigated by using the time-convolutionless master-equation method. Our results show that, nonzero temperature can induce the entanglement sudden death and accelerate the decays of discord and entanglement. The discord and the entanglement have different robustness for different initial states and their robustness may change under certain conditions. When both the non-Markovian effect and detuning are present simultaneously, due to the memory and feedback effect of non-Markovian reservoirs, the discord and entanglement can be effectively protected even at nonzero temperature by increasing the non-Markovian effect and the detuning.
Keywords:  discord      entanglement      non-Markovian environment      temperature  
Received:  30 July 2015      Revised:  20 October 2015      Accepted manuscript online: 
PACS:  03.65.Yz (Decoherence; open systems; quantum statistical methods)  
  03.67.-a (Quantum information)  
  42.50.Pq (Cavity quantum electrodynamics; micromasers)  
Fund: Project supported by the Science and Technology Plan of Hunan Province, China (Grant No. 2010FJ3148), the National Natural Science Foundation of China (Grant No. 11374096), and the Doctoral Science Foundation of Hunan Normal University, China.
Corresponding Authors:  Hong-Mei Zou     E-mail:  zhmzc1997@126.com

Cite this article: 

Hong-Mei Zou(邹红梅), Mao-Fa Fang(方卯发) Discord and entanglement in non-Markovian environments at finite temperatures 2016 Chin. Phys. B 25 090302

[1] Schrödinger E 1935 Naturwissenschaften. 23 807
[2] Nielsen M A and Chuang I L 2000 Quantum Computation and Quantum Information (Cambridge: Cambridge University Press)
[3] Bouwmeester D, Pan J W, Mattle K, Eibl M, Weinfurter H and Zeilinger A 1997 Nature 390 575
[4] Cirac J I and Zoller P 1995 Phys. Rev. Lett. 74 4091
[5] Blinov B B, Moehring D L, Duan L M and Monroe C 2004 Nature 428 153
[6] Haroche S and Raimond J M 2006 Exploring the Quantum: Atoms, Cavities, and Photons (Oxford: Oxford University Press)
[7] Yu T and Eberly J H 2004 Phys. Rev. Lett. 93 140404
[8] Zou H M and Fang M F 2015 Quantum Inf. Process 14 2673
[9] Mazzola L, Maniscalco S, Piilo J, Suominen K A and Garraway B M 2009 Phys. Rev. A 79 042302
[10] Cao X F and Zheng H 2008 Phys. Rev. A 77 022320
[11] Ollivier H and Zurek W H 2001 Phys. Rev. Lett. 88 017901
[12] Zurek W H 2003 Phys. Rev. A 67 012320
[13] Datta A, Shaji A and Caves C M 2008 Phys. Rev. Lett. 100 050502
[14] Cui J and Fan H 2010 J. Phys. A: Math. Theor. 43 045305
[15] Dillenschneider R 2008 Phys. Rev. B 78 224413
[16] Sarandy M S 2009 Phys. Rev. A 80 022108
[17] Datta A 2009 Phys. Rev. A 80 052304
[18] Breuer H P and Petruccione F 2002 The Theory of Open Quantum Systems (Oxford: Oxford University Press)
[19] Rossi M A C, Benedetti C and Paris M G A 2014 Int. J. Quantum Inf. 12 1560003
[20] Helm J, Strunz W T, Rietzler S and Würflinger L E 2011 Phys. Rev. A 83 042103
[21] Crow D and Joynt R 2014 Phys. Rev. A 89 042123
[22] Witzel W M, Young K and Das Sarma S 2014 Phys. Rev. B 90 115431
[23] Benedetti C, Buscemi F, Bordone P and Paris M G A 2013 Phys. Rev. A 87 052328
[24] Benedetti C, Buscemi F, Bordone P and Paris M G A 2012 Int. J. Quantum Inf. 10 1241005
[25] Xu J S, Sun K, Li C F, Xu X Y, Guo G C, Andersson E and Franco R L 2013 Nat. Commun. 4 2851
[26] D'Arrigo A, Franco R Lo, Benenti G, Paladino E and Falci G 2014 Ann. Phys. 350 211
[27] Franco R Lo, D'Arrigo A, Falci G, Compagno G and Paladino E 2012 Phys. Scripta T147 014019
[28] Benedetti C, Paris M G A and Maniscalco S 2014 Phys. Rev. A 89 012114
[29] Bellomo B, Franco R L and Compagno G 2007 Phys. Rev. Lett. 99 160502
[30] Bellomo B, Franco R L and Compagno G 2008 Phys. Rev. A 77 032342
[31] Xiao X, Fang M F and Li Y L 2010 Opt. Commun. 283 3001
[32] Wang B, Xu Z Y, Chen Z Q and Feng M 2010 Phys. Rev. A 81 014101
[33] Werlang T, Souza S, Fanchini F F and Villas-Boas C J 2009 Phys. Rev. A 80 024103
[34] Ferraro E, Scala M, Migliore R and Napoli A 2009 Phys. Rev. A 80 042112
[35] Zou H M, Fang M F and Yang B Y 2013 Chin. Phys. B 22 120303
[36] Zou H M, Fang M F and Yang B Y 2015 Phys. Scr. 90 035104
[37] Wang C Z, Li C X, Nie L Y and Li J F 2011 J. Phys. B: At. Mol. Phys. 44 015503
[38] Wootter W K 1998 Phys. Rev. Lett. 80 2245
[39] Ferraro A, Aolita L, Cavalcanti D, Cucchietti F M and Acin A 2010 Phys. Rev. A 81 052318
[40] Raimond J M, Brune M and Haroche S 2001 Rev. Mod. Phys. 73 565
[41] Hagley E, Maitre X, Nogues G, Wunderlich C, Brune M, Raimond J M and Haroche S 1997 Phys. Rev. Lett. 79 1
[42] Kuhr S, Gleyzes S, Guerlin C, Bernu J, Hoff U B, Deléglise S, Osnaghi S, Brune M, Raimond J M, Haroche S, Jacques E, Bosland P and Visentin B 2007 Appl. Phys. Lett. 90 164101
[1] A 3-5 μm broadband YBCO high-temperature superconducting photonic crystal
Gang Liu(刘刚), Yuanhang Li(李远航), Baonan Jia(贾宝楠), Yongpan Gao(高永潘), Lihong Han(韩利红), Pengfei Lu(芦鹏飞), and Haizhi Song(宋海智). Chin. Phys. B, 2023, 32(3): 034213.
[2] Analysis of high-temperature performance of 4H-SiC avalanche photodiodes in both linear and Geiger modes
Xing-Ye Zhou(周幸叶), Yuan-Jie Lv(吕元杰), Hong-Yu Guo(郭红雨), Guo-Dong Gu(顾国栋), Yuan-Gang Wang(王元刚), Shi-Xiong Liang(梁士雄), Ai-Min Bu(卜爱民), and Zhi-Hong Feng(冯志红). Chin. Phys. B, 2023, 32(3): 038502.
[3] Unified entropy entanglement with tighter constraints on multipartite systems
Qi Sun(孙琪), Tao Li(李陶), Zhi-Xiang Jin(靳志祥), and Deng-Feng Liang(梁登峰). Chin. Phys. B, 2023, 32(3): 030304.
[4] Entanglement and thermalization in the extended Bose-Hubbard model after a quantum quench: A correlation analysis
Xiao-Qiang Su(苏晓强), Zong-Ju Xu(许宗菊), and You-Quan Zhao(赵有权). Chin. Phys. B, 2023, 32(2): 020506.
[5] In situ temperature measurement of vapor based on atomic speed selection
Lu Yu(于露), Li Cao(曹俐), Ziqian Yue(岳子骞), Lin Li(李林), and Yueyang Zhai(翟跃阳). Chin. Phys. B, 2023, 32(2): 020602.
[6] Giant low-field cryogenic magnetocaloric effect in polycrystalline LiErF4 compound
Zhaojun Mo(莫兆军), Jianjian Gong(巩建建), Huicai Xie(谢慧财), Lei Zhang(张磊), Qi Fu(付琪), Xinqiang Gao(高新强), Zhenxing Li(李振兴), and Jun Shen(沈俊). Chin. Phys. B, 2023, 32(2): 027503.
[7] Temperature characterizations of silica asymmetric Mach-Zehnder interferometer chip for quantum key distribution
Dan Wu(吴丹), Xiao Li(李骁), Liang-Liang Wang(王亮亮), Jia-Shun Zhang(张家顺), Wei Chen(陈巍), Yue Wang(王玥), Hong-Jie Wang(王红杰), Jian-Guang Li(李建光), Xiao-Jie Yin(尹小杰), Yuan-Da Wu(吴远大), Jun-Ming An(安俊明), and Ze-Guo Song(宋泽国). Chin. Phys. B, 2023, 32(1): 010305.
[8] Transformation relation between coherence and entanglement for two-qubit states
Qing-Yun Zhou(周晴云), Xiao-Gang Fan(范小刚), Fa Zhao(赵发), Dong Wang(王栋), and Liu Ye(叶柳). Chin. Phys. B, 2023, 32(1): 010304.
[9] Growth behaviors and emission properties of Co-deposited MAPbI3 ultrathin films on MoS2
Siwen You(游思雯), Ziyi Shao(邵子依), Xiao Guo(郭晓), Junjie Jiang(蒋俊杰), Jinxin Liu(刘金鑫), Kai Wang(王凯), Mingjun Li(李明君), Fangping Ouyang(欧阳方平), Chuyun Deng(邓楚芸), Fei Song(宋飞), Jiatao Sun(孙家涛), and Han Huang(黄寒). Chin. Phys. B, 2023, 32(1): 017901.
[10] Heat transport properties within living biological tissues with temperature-dependent thermal properties
Ying-Ze Wang(王颖泽), Xiao-Yu Lu(陆晓宇), and Dong Liu(刘栋). Chin. Phys. B, 2023, 32(1): 014401.
[11] Numerical simulation of the thermal non-equilibrium flow-field characteristics of a hypersonic Apollo-like vehicle
Minghao Yu(喻明浩), Zeyang Qiu(邱泽洋), Bo Lv(吕博), and Zhe Wang(王哲). Chin. Phys. B, 2022, 31(9): 094702.
[12] Characterizing entanglement in non-Hermitian chaotic systems via out-of-time ordered correlators
Kai-Qian Huang(黄恺芊), Wei-Lin Li(李蔚琳), Wen-Lei Zhao(赵文垒), and Zhi Li(李志). Chin. Phys. B, 2022, 31(9): 090301.
[13] Nonreciprocal coupling induced entanglement enhancement in a double-cavity optomechanical system
Yuan-Yuan Liu(刘元元), Zhi-Ming Zhang(张智明), Jun-Hao Liu(刘军浩), Jin-Dong Wang(王金东), and Ya-Fei Yu(於亚飞). Chin. Phys. B, 2022, 31(9): 094203.
[14] Finite superconducting square wire-network based on two-dimensional crystalline Mo2C
Zhen Liu(刘震), Zi-Xuan Yang(杨子萱), Chuan Xu(徐川), Jia-Ji Zhao(赵嘉佶), Lu-Junyu Wang(王陆君瑜), Yun-Qi Fu(富云齐), Xue-Lei Liang(梁学磊), Hui-Ming Cheng(成会明), Wen-Cai Ren(任文才), Xiao-Song Wu(吴孝松), and Ning Kang(康宁). Chin. Phys. B, 2022, 31(9): 097404.
[15] Direct measurement of two-qubit phononic entangled states via optomechanical interactions
A-Peng Liu(刘阿鹏), Liu-Yong Cheng(程留永), Qi Guo(郭奇), Shi-Lei Su(苏石磊), Hong-Fu Wang(王洪福), and Shou Zhang(张寿). Chin. Phys. B, 2022, 31(8): 080307.
No Suggested Reading articles found!