Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(8): 087501    DOI: 10.1088/1674-1056/25/8/087501
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Entanglement in a two-spin system with long-range interactions

Soltani M R1, Mahdavifar S2, Mahmoudi M2
1 Department of Physics, College of Science, Yadegar-e-Imam Khomeini(RAH) Shahre-Rey Branch, Islamic Azad University, Tehran, Iran;
2 Department of Physics, University of Guilan, 41335-1914, Rasht, Iran
Abstract  The quantum entanglement between two spins in the Ising model with an added Dzyaloshinsky-Moriya (DM) interaction and in the presence of the transverse magnetic field is studied. The exchange interaction is considered as a function of the distance between spins. The negativity as a function of magnetic field, exchange and DM interaction is calculated. The effect of the distance between spins is studied based on the negativity. In addition, the effect of the thermal fluctuation on the negativity is also investigated.
Keywords:  entanglement      Ising model      DM interaction      negativity      long range interaction  
Received:  02 February 2016      Revised:  08 March 2016      Accepted manuscript online: 
PACS:  75.10.Jm (Quantized spin models, including quantum spin frustration)  
  75.10.Pq (Spin chain models)  
Corresponding Authors:  Soltani M R     E-mail:  soltani@iausr.ac.ir

Cite this article: 

Soltani M R, Mahdavifar S, Mahmoudi M Entanglement in a two-spin system with long-range interactions 2016 Chin. Phys. B 25 087501

[1] Schumacher B 1996 Phys. Rev. A 54 2614
[2] Imamoghlu A, Awschalom D D, Burkard G, DiVincenzo D P, Loss D, Sherwin M and Small A 1999 Phys. Rev. Lett. 83 4204
[3] Bennett C H, Brassard G, Crépeau C, Jozsa R, Peres A and Wootters W K 1993 Phys. Rev. Lett. 70 1895
[4] Bennett C H and Wiesner S J 1988 Phys. Rev. Lett. 69 2881
[5] Han L 2015 Acta Phys. Sin. 64 160307 (in Chinese)
[6] Qing Q, Kui F and Cheng C 2015 Acta Phys. Sin. 64 160306 (in Chinese)
[7] Loss D and Divincenzo D P 1998 Phys. Rev. A 57 120
[8] Santos L F 2003 Phys. Rev. A 67 062306
[9] Bukard G, Loss D and Divincenzo D P 1999 Phys. Rev. B 59 2070
[10] Dvincenzo D P 1995 Science 270 255
[11] Deutsch D, Ekert A, Jozsa R, Macchiavello C, Popescu S and Sanpera A 1996 Phys. Rev. Lett. 77 2818
[12] Bose S and Contemp J 2007 Physica 48 13
[13] Key A 2010 Int. J. Quantum Inform. 8 641
[14] Kamta G L and Starace A F 2002 Phys. Rev. Lett. 88 107901
[15] Sun Y, Chen Y and Chen H 2003 Phys. Rev. A 68 044301
[16] Wang X 2001 Phys. Rev. A 64 012313
[17] Yeo Y 2002 Phys. Rev. A 66 062312
[18] Santos L F 2003 Phys. Rev. A 67 062306
[19] Zhou L Song H S, Guo Y Q and Li C 2003 Phys. Rev. A 68 024301
[20] Abliz A et al. 2006 Phys. Rev. A 74 052105
[21] Zhang G F 2007 Phys. Rev. A 75 034304
[22] Soltani M R, Vahedi J, Sadremomtaz A R and Aboulhasni M R 2012 Indian J. Phys. 86 1073
[23] Han S D and Aydiner E 2014 Chin. Phys. B 23 050305
[24] Vahedi J, Soltani M R and Mahdavifar S 2012 Journal of Superconductivity and Novel Magnetism 15 1159
[25] Li D C, Li X M, Li H, Tao R, Yang M and Cao Z L 2015 Chin. Phys. Lett. 32 050302
[26] Arnesen M C, Bose S and Vedral V 2001 Phys. Rev. Lett. 87 017901
[27] Soheilian F and Soltani M R 2010 Indian J. Phys. 84 257
[28] Wang L C, Yan J Y and Yi X X 2011 Chin. Phys. B 20 040305
[29] Asoudeh M and Karimipour V 2005 Phys. Rev. A 71 022308
[30] Zyczkowski K, Horodecki P, Sanpera A and Lewenstein M 1998 Phys. Rev. A 58 883
[31] Vidal G and Werne R F 2002 Phys. Rev. A 65 032314
[32] Sutherland B 1971 Phys. Rev. A 4 2019
[33] Haldane F D M 1988 Phys. Rev. Lett. 60 635
[34] Haldane F D M 1991 Phys. Rev. Lett. 66 1529
[35] Shastry B S 1992 Phys. Rev. Lett. 69 164
[36] Kawakami N 1992 Phys. Rev. B 46 1005
[37] Han S D, Tufekci T, Spiller T P and Aydiner E 2012 arXiv:1111.2694 quanta-ph
[38] Jurcevic P and Lanyon B P 2014 Nature 511 202
[39] Schachenmayer J, Lanyon B P, Roos C F and Daley A 2013 Phys. Rev. X 3 031015
[40] Hauke P and Tagliacozzo L 2013 Phys. Rev. Lett. 111 207202
[41] Divyamani1 B G 2013 Chin. Phys. Lett. 30 120301
[42] Shastry B S 1988 Phys. Rev. Lett. 60 639
[1] Unified entropy entanglement with tighter constraints on multipartite systems
Qi Sun(孙琪), Tao Li(李陶), Zhi-Xiang Jin(靳志祥), and Deng-Feng Liang(梁登峰). Chin. Phys. B, 2023, 32(3): 030304.
[2] Entanglement and thermalization in the extended Bose-Hubbard model after a quantum quench: A correlation analysis
Xiao-Qiang Su(苏晓强), Zong-Ju Xu(许宗菊), and You-Quan Zhao(赵有权). Chin. Phys. B, 2023, 32(2): 020506.
[3] Transformation relation between coherence and entanglement for two-qubit states
Qing-Yun Zhou(周晴云), Xiao-Gang Fan(范小刚), Fa Zhao(赵发), Dong Wang(王栋), and Liu Ye(叶柳). Chin. Phys. B, 2023, 32(1): 010304.
[4] Characterizing entanglement in non-Hermitian chaotic systems via out-of-time ordered correlators
Kai-Qian Huang(黄恺芊), Wei-Lin Li(李蔚琳), Wen-Lei Zhao(赵文垒), and Zhi Li(李志). Chin. Phys. B, 2022, 31(9): 090301.
[5] Nonreciprocal coupling induced entanglement enhancement in a double-cavity optomechanical system
Yuan-Yuan Liu(刘元元), Zhi-Ming Zhang(张智明), Jun-Hao Liu(刘军浩), Jin-Dong Wang(王金东), and Ya-Fei Yu(於亚飞). Chin. Phys. B, 2022, 31(9): 094203.
[6] Purification in entanglement distribution with deep quantum neural network
Jin Xu(徐瑾), Xiaoguang Chen(陈晓光), Rong Zhang(张蓉), and Hanwei Xiao(肖晗微). Chin. Phys. B, 2022, 31(8): 080304.
[7] Direct measurement of two-qubit phononic entangled states via optomechanical interactions
A-Peng Liu(刘阿鹏), Liu-Yong Cheng(程留永), Qi Guo(郭奇), Shi-Lei Su(苏石磊), Hong-Fu Wang(王洪福), and Shou Zhang(张寿). Chin. Phys. B, 2022, 31(8): 080307.
[8] Robustness of two-qubit and three-qubit states in correlated quantum channels
Zhan-Yun Wang(王展云), Feng-Lin Wu(吴风霖), Zhen-Yu Peng(彭振宇), and Si-Yuan Liu(刘思远). Chin. Phys. B, 2022, 31(7): 070302.
[9] Self-error-rejecting multipartite entanglement purification for electron systems assisted by quantum-dot spins in optical microcavities
Yong-Ting Liu(刘永婷), Yi-Ming Wu(吴一鸣), and Fang-Fang Du(杜芳芳). Chin. Phys. B, 2022, 31(5): 050303.
[10] Effects of colored noise on the dynamics of quantum entanglement of a one-parameter qubit—qutrit system
Odette Melachio Tiokang, Fridolin Nya Tchangnwa, Jaures Diffo Tchinda,Arthur Tsamouo Tsokeng, and Martin Tchoffo. Chin. Phys. B, 2022, 31(5): 050306.
[11] Entanglement spectrum of non-Abelian anyons
Ying-Hai Wu(吴英海). Chin. Phys. B, 2022, 31(3): 037302.
[12] Probabilistic resumable quantum teleportation in high dimensions
Xiang Chen(陈想), Jin-Hua Zhang(张晋华), and Fu-Lin Zhang(张福林). Chin. Phys. B, 2022, 31(3): 030302.
[13] Tetrapartite entanglement measures of generalized GHZ state in the noninertial frames
Qian Dong(董茜), R. Santana Carrillo, Guo-Hua Sun(孙国华), and Shi-Hai Dong(董世海). Chin. Phys. B, 2022, 31(3): 030303.
[14] Time evolution law of a two-mode squeezed light field passing through twin diffusion channels
Hai-Jun Yu(余海军) and Hong-Yi Fan(范洪义). Chin. Phys. B, 2022, 31(2): 020301.
[15] Bright 547-dimensional Hilbert-space entangled resource in 28-pair modes biphoton frequency comb from a reconfigurable silicon microring resonator
Qilin Zheng(郑骑林), Jiacheng Liu(刘嘉成), Chao Wu(吴超), Shichuan Xue(薛诗川), Pingyu Zhu(朱枰谕), Yang Wang(王洋), Xinyao Yu(于馨瑶), Miaomiao Yu(余苗苗), Mingtang Deng(邓明堂), Junjie Wu(吴俊杰), and Ping Xu(徐平). Chin. Phys. B, 2022, 31(2): 024206.
No Suggested Reading articles found!