CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Magnetocaloric and magnetic properties of La2NiMnO6 double perovskite |
Masrour R, Jabar A |
Laboratory of Materials, Processes, Environment and Quality, Cady Ayyed University, National School of Applied Sciences, P. O. Box 63 46000, Safi, Morocco |
|
|
Abstract The magnetic effect and the magnetocaloric effect in La2NiMnO6(LNMO) double perovskite are studied using the Monte Carlo simulations. The magnetizations, specific heat values, and magnetic entropies are obtained for different exchange interactions and external magnetic fields. The adiabatic temperature is obtained. The transition temperature is deduced. The relative cooling power is established with a fixed value of exchange interaction. According to the master curve behaviors for the temperature dependence of ΔSmmax predicted for different maximum fields, in this work it is confirmed that the paramagnetic-ferromagnetic phase transition observed for our sample is of a second order. The near room-temperature interaction and the superexchange interaction between Ni and Mn are shown to be due to the ferromagnetism of LNMO.
|
Received: 06 February 2016
Revised: 30 March 2016
Accepted manuscript online:
|
PACS:
|
75.30.Sg
|
(Magnetocaloric effect, magnetic cooling)
|
|
05.10.Ln
|
(Monte Carlo methods)
|
|
Corresponding Authors:
Masrour R
E-mail: rachidmasrour@hotmail.com
|
Cite this article:
Masrour R, Jabar A Magnetocaloric and magnetic properties of La2NiMnO6 double perovskite 2016 Chin. Phys. B 25 087502
|
[1] |
Flerov I N, Gorev M V, Aleksandrov K S, Tressaud A, Grannec J and Couzi M 1998 Mater. Sci. Eng. 24 81
|
[2] |
Anderson M T, Greenwood K B, Taylor G A and Poeppelmeier K R 1993 Prog. Solid State Chem. 22 197
|
[3] |
Booth R J, Fillman R, Whitaker H, Nag A, Tiwari R M, Ramanujachary K V, Gopalakrishnan J and Lofland S E 2009 Mater. Res. Bull. 44 1559
|
[4] |
Rogado N S, Li J, Sleight A W and Subramanian M A 2005 Adv. Mater. 17 2225
|
[5] |
Dass R I, Yan J Q and Goodenough J B 2003 Phys. Rev. B 68 064415
|
[6] |
Joseph V L, Joy P A, Date S K and Gopinath C S 2002 Phys. Rev. B 65 184416
|
[7] |
Sanchez M C, Garcia J, Blasco J, Subias G and Perez-Cacho J 2002 Phys. Rev. B 65 144409
|
[8] |
Zhang Y, Ji V and Xu K W 2012 Physica B 407 2617
|
[9] |
Wang T, Shi W Z, Fang X D, Dong W W and Tao R H 2010 J. Sol-Gel Sci. Technol. 53 655
|
[10] |
Hashisaka M, Kan B, Masuno A, Takano M and Shimakawa Y 2006 Appl. Phys. Lett. 89 032504
|
[11] |
Moure C and Pena O 2013 J. Magn. Magn. Mater. 337-338 1
|
[12] |
Matar S F, Subramanian M A, Villesuzanne A, Eyert V and Whangbo M H 2007 J. Magn. Magn. Mater. 308 116
|
[13] |
Goodenough J B, Wold A, Arnott R J and Menyuk N 1961 Phys. Rev. 124 373
|
[14] |
Blasse G 1965 J. Phys. Chem. Solids 26 1969
|
[15] |
Choudhury D, Mandal P, Mathieu R, Hazarika A, Rajan S, Sundaresan A, Waghmare U V, Knut R, Karis O, Nordblad P and Sarma D D 2012 Phys. Rev. Lett. 108 127201
|
[16] |
Nautiyal P, Motin Seikh M, Pralong V and Kundu A K 2013 J. Magn. Magn. Mater. 347 111
|
[17] |
Lv J P, Deng Y J and Chen Q H 2011 Phys. Rev. E 84 021125
|
[18] |
Ding D, Zhang Y Q and Xia L 2015 Chin. Phys. Lett. 32 106101
|
[19] |
Xue D, Ying Z G, Suo X W, Jia H Y and Feng H 2015 Acta Phys. Sin. 64 177502 (in Chinese)
|
[20] |
Masrour R, Jabar A, Benyoussef A, Hamedoun M and Hlil E K 2016 J. Magn. Magn. Mater. 401 91
|
[21] |
Zhou S, Shi L, Yang H and Zhao J 2007 Appl. Phys. Lett. 91 172505
|
[22] |
Wang X, Sui Y, Li Y, Li X L, Wang Z Y, Liu Z, Su W and Tang J 2009 Appl. Phys. Lett. 95 252502
|
[23] |
Wold A, Arnott R J and Goodenough J 1958 Appl. Phys. Berl. 29 387
|
[24] |
Goodenough J B 1955 Phys. Rev. 100 564
|
[25] |
Sonobe M and Asai K 1992 J. Phys. Soc. Jpn. 61 4193
|
[26] |
Manh T V, Ho T A, Thanh T D, Phan T L, Phan M H and Yu S C 2015 IEEE Trans. Magnetic. 51 2400304
|
[27] |
Luo X, Sun Y P, Wang B, Zhu X B, Song W H, Yang Z R and Dai J M 2009 Solid State Commun. 149 810
|
[28] |
Guo Z B, Du Y W, Zhu J S, Huang H, Ding W P and Feng D 1997 Phys. Rev. Lett. 78 1142
|
[29] |
Wang Z M, Ni G, Xu Q Y, Sang H and Du Y W 2001 J. Appl. Phys. 90 5689
|
[30] |
Murthy K J, Chandrasekhar K D, Mahana S, Topwal D and Venimadhav A 2015 J. Phys. D:Appl. Phys. 48 355001
|
[31] |
Tang T, Gu K M, Cao Q Q, Wang D H, Zang S Y and Du Y W 2000 J. Magn. Magn. Mater. 222 110
|
[32] |
Kitanovski A and Egolf P W 2006 Int. J. Refrig. 29 3
|
[33] |
Guo H Z, Burgess J, Ada E, Street S, Gupta A, Iliev M N, Kellock A J, Magen C, Varela M and Pennycook S J 2008 Phys. Rev. B 77 174423
|
[34] |
Yu X, Asaka T, Tomioka Y, Tsuruta C, Naai T, Kimoto K, Kaneko Y, Tokura Y and Matsui Y 2005 J. Electron Microsc. 54 61
|
[35] |
Cubrovic M, Zaanen J and Schalm K 2009 Science 325 439
|
[36] |
Pfleiderer C, McMullan G J, Julian S R and Lonzarich G G 1997 Phys. Rev. B 55 8330
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|