CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Vortex quasi-crystals in mesoscopic superconducting samples |
Jing-Kun Wang(王璟琨)1, Wei Zhang(张威)1,2, Sá de Melo C A R3 |
1 Department of Physics, Renmin University of China, Beijing 100872, China;
2 Beijing Key Laboratory of Opto-electronic Functional Materials and Micro-nano Devices, Renmin University of China, Beijing 100872, China;
3 School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332, USA |
|
|
Abstract There seems to be a one to one correspondence between the phases of atomic and molecular matter (AMOM) and vortex matter (VM) in superfluids and superconductors. Crystals, liquids, and glasses have been experimentally observed in both AMOM and VM. Here, we propose a vortex quasi-crystal state which can be stabilized due to boundary and surface energy effects for samples of special shapes and sizes. For finite sized pentagonal samples, it is proposed that a phase transition between a vortex crystal and a vortex quasi-crystal occurs as a function of magnetic field and temperature as the sample size is reduced.
|
Received: 26 February 2016
Revised: 23 April 2016
Accepted manuscript online:
|
PACS:
|
74.25.Uv
|
(Vortex phases (includes vortex lattices, vortex liquids, and vortex glasses))
|
|
74.25.Op
|
(Mixed states, critical fields, and surface sheaths)
|
|
74.78.Na
|
(Mesoscopic and nanoscale systems)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11274009, 11434011, and 111522436), the National Key Basic Research Program of China (Grant No. 2013CB922000), the Research Funds of Renmin University of China (Grant Nos. 10XNL016 and 16XNLQ03), and the Program of State Key Laboratory of Quantum Optics and Quantum Optics Devices (Grant No. KF201404). |
Corresponding Authors:
Wei Zhang
E-mail: wzhangl@ruc.edu.cn
|
Cite this article:
Jing-Kun Wang(王璟琨), Wei Zhang(张威), Sá de Melo C A R Vortex quasi-crystals in mesoscopic superconducting samples 2016 Chin. Phys. B 25 087401
|
[1] |
Crabtree G W and Nelson D R 1997 Physics Today, pp. 38-45
|
[2] |
Safar H, Gammel P L, Huse D A, Bishop D J, Lee W C, Giapintzakis J and Ginsberg D M 1993 Phys. Rev. Lett. 70 3800
|
[3] |
Kwok W K, Fendric J, Fleshler S, Welp U, Downey J and Crabtree G W 1994 Phys. Rev. Lett. 72 1092
|
[4] |
Abrikosov A A 1957 Sov. Phys. JETP 5 1174
|
[5] |
Koch R H, Foglietti V, Gallagher W J, Koren G, Gupta A and Fisher M P A 1989 Phys. Rev. Lett. 63 1511
|
[6] |
Shechtman D, Blech I, Gratias D and Cahn J W 1984 Phys. Rev. Lett. 53 1951
|
[7] |
Sá de Melo C A R 2007 "Vortex Quasi-crystals", manuscript No. LH7266, 05Aug99. See this unpublished work in preprint No. cond-mat/0703156
|
[8] |
Misko V, Savel'ev S and Nori F 2005 Phys. Rev. Lett. 95 177007
|
[9] |
Misko V, Savel'ev S and Nori F 2006 Phys. Rev. B 74 024522
|
[10] |
Villegas J E, Montero M I, Li C P and Schuller I K 2006 Phys. Rev. Lett. 97 027002
|
[11] |
Kemmler M, Gürlich C, Sterck A, Pöhler H, Neuhaus M, Siegel M, Kleiner R and Koelle D 2006 Phys. Rev. Lett. 97 147003
|
[12] |
Silhanek A V, Gillijns W, Moshchalkov V V, Zhu B Y, Moonens J and Leunissen L H A 2006 Appl. Phys. Lett. 89 152507
|
[13] |
Denton A R and Lowen H 1998 Phys. Rev. Lett. 81 469
|
[14] |
Matthews M R, Anderson B P, Haljan P C, Hall D S, Wieman C E and Cornell E A 1999 Phys. Rev. Lett. 83 2498
|
[15] |
Zwierlein M W, Abo-Shaeer J R, Schirotzek A, Schunck C H and Ketterle W 2005 Nature 435 1047
|
[16] |
Tung S, Schweikhard V and Cornell E A 2006 Phys. Rev. Lett. 97 240402
|
[17] |
Geim A K, Griogorieva I V, Dubonos S V, Lok J G S, Maan J C, Filippov A E and Peeters F M 1997 Nature 390 259
|
[18] |
Geim A K, Dubonos S V, Palacios J J, Grigorieva I V, Henini M and Schermer J J 2000 Phys. Rev. Lett. 85 1528
|
[19] |
Chibotaru L F, Ceulemans A, Bruyndoncx V and Moshchalkov V V 2000 Nature 408 833
|
[20] |
Chibotaru L F, Ceulemans A, Bruyndoncx V and Moshchalkov V V 2001 Phys. Rev. Lett. 86 1323
|
[21] |
Dikin D A, Chandrasekhar V, Misko V R, Fomin V M and Devreese J T 2003 Eur. Phys. J. B 34 231
|
[22] |
Berdiyorov G R, Milosevic M V and Peeters F M 2006 Phys. Rev. Lett. 96 207001
|
[23] |
Saint-James D, Sarma G and Thomas E J 1969 Type II superconductivity (Oxford:Pergamon Press) Chap. 3
|
[24] |
Steinhardt P J and Jeong H C 1996 Nature 382 431
|
[25] |
Jeong H C and Steinhardt P J 1997 Phys. Rev. B 55 3520
|
[26] |
Henrici P 1986 Applied and computational complex analysis (New York:John Wiley and Sons) Vol. III, Chap. 16
|
[27] |
Sun L, Huo Y, Zhou C, Liang J H, Zhang X Z, Xu Z J, Wang Y and Wu Y Z 2015 Acta Phys. Sin. 64 197502 (in Chinese)
|
[28] |
Kosterlitz J M and Thouless D J 1973 J. Phys. C 6 1181
|
[29] |
Halperin B I and Nelson D R 1978 Phys. Rev. Lett. 41 121
|
[30] |
Halperin B I and Nelson D R 1979 Phys. Rev. B 19 2457
|
[31] |
Young A P 1979 Phys. Rev. B 19 1855
|
[32] |
Cabral L R E, Baelus B J and Peeters F M 2004 Phys. Rev. B 70 144523
|
[33] |
Grigorieva I V, Escoffier W, Richardson J, Vinnikov L Y, Dubonos S and Oboznov V 2006 Phys. Rev. Lett. 96 077005
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|