Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(8): 083401    DOI: 10.1088/1674-1056/25/8/083401
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Understanding charge transfer of Li+ and Na+ ions scattered from metal surfaces with high work function

Lin Chen(陈林), Wen-Bin Wu(武文斌), Pin-Yang Liu(刘品阳), Yun-Qing Xiao(肖云青), Guo-Peng Li(李国朋), Yi-Ran Liu(刘亦然), Hao-Yu Jiang(江浩雨), Yan-Ling Guo(郭艳玲), Xi-Meng Chen(陈熙萌)
School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000, China
Abstract  For Li+ and Na+ ions scattered from high work function metal surfaces, efficient neutralization is observed, and it cannot be explained by the conventional free electron model. In order to explain these experimental data, we investigate the velocity-dependent neutral fraction with the modified Brako-Newns (BN) model. The calculated results are in agreement with the experimental data. We find that the parallel velocity effect plays an important role in neutralizing the Li+ and Na+ ions for large angle scattering. The nonmonotonic velocity behavior of neutral fraction is strongly related to the distance-dependent coupling strength between the atomic level and metal states.
Keywords:  neutralization      alkali-metal ion      metal surface      scattering  
Received:  13 February 2016      Revised:  25 April 2016      Accepted manuscript online: 
PACS:  34.35.+a (Interactions of atoms and molecules with surfaces)  
  34.70.+e (Charge transfer)  
  78.70.-g (Interactions of particles and radiation with matter)  
  34.10.+x (General theories and models of atomic and molecular collisions and interactions (including statistical theories, transition state, stochastic and trajectory models, etc.))  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11405078 and 11474140), the Fundamental Research Funds for the Central Universities, China (Grant Nos. lzujbky-2014-169 and lzujbky-2015-244), the Project sponsored by the Scientific Research Foundation for the Returned Overseas Chinese Scholars, the State Education Ministry, and the National Students' Innovation and Entrepreneurship Training Program (Grant Nos. 201410730069 and 201510730078).
Corresponding Authors:  Xi-Meng Chen     E-mail:  chenlin@lzu.edu.cn

Cite this article: 

Lin Chen(陈林), Wen-Bin Wu(武文斌), Pin-Yang Liu(刘品阳), Yun-Qing Xiao(肖云青), Guo-Peng Li(李国朋), Yi-Ran Liu(刘亦然), Hao-Yu Jiang(江浩雨), Yan-Ling Guo(郭艳玲), Xi-Meng Chen(陈熙萌) Understanding charge transfer of Li+ and Na+ ions scattered from metal surfaces with high work function 2016 Chin. Phys. B 25 083401

[1] Meyer C, Bonetto F, Vidal R, García E A, Gonzalez C, Ferrón J and Goldberg E C 2012 Phys. Rev. A 86 032901
[2] Ray M P, Lake R E, Marston J B and Sosolik C E 2015 Surf. Sci. 635 37
[3] Liu W B, Niu S T, Yang A X, Han C Z, Hu W, Chen L, Shao J X and Chen X M 2015 Chin. Phys. B 24 063403
[4] Hu B T, Zhang H J, Zhang J, Song Y S, Wang L L, Chen C H and Gu J G 2007 Chin. Phys. 16 2918
[5] Li T C, Liu C H, Qu Y Z, Liu L, Wu Y, Wang J G, Liebermann H P and Buenker R J 2015 Chin. Phys. B 24 0103401
[6] Borisov A G, Teillet-Billy D and Gauyacq J P 1992 Phys. Rev. Lett. 68 2842
[7] Chen L, Qiu S L, Xiong F F, Lu J J, Liu P Y, Ding B, Li Y, Cui Y, Guo Y L and Chen X M 2015 J. Chem. Phys. 143 114703
[8] Wang Q J, Qiu S L, Xiong F F, Li Y, Ding B, Guo Y L, Chen X M and Chen L 2015 Eur. Phys. J. D 69 210
[9] Chen L, Ding B, Li Y, Qiu S L, Xiong F F, Zhou H, Guo Y L and Chen X M 2013 Phys. Rev. A 88 044901
[10] Tang T T, Wang D H and Wang S S 2012 Chin. Phys. B 21 073202
[11] Xu Z X and Roy V A L 2014 Chin. Phys. B 23 048501
[12] Obreshkov B and Thumm U 2013 Phys. Rev. A 87 022903
[13] Winter H 2002 Phys. Rep. 367 387
[14] Los J and Geerlings J J C 1990 Phys. Rep. 190 133
[15] Borisov A G and Esaulov V A 2000 J. Phys.:Condens. Matter 12 R177
[16] Monreal R C 2014 Prog. Surf. Sci. 89 80
[17] Keller C A, DiRubio C A, Kimmel G A and Cooper B H 1995 Phys. Rev. Lett. 75 1654
[18] Canário A R, Borisov A G, Gauyacq J P and Esaulov V A 2005 Phys. Rev. B 71 121401
[19] Kimmel G A and Cooper B H 1993 Phys. Rev. B 48 12164
[20] Canário A R, Kravchuk T and Esaulov V A 2006 New J. Phys. 8 227
[21] Hamoudi H, Dablemont C and Esaulov V A 2008 Surf. Sci. 602 2486
[22] Bonetto F J, García E A, González C and Goldberg E C 2014 J. Phys. Chem. C 118 8359
[23] Chen L, Shen J, Jia J, Kandasamy T, Bobrov K, Guillemot L, Fuhr J D, Luz Martiarena M and Esaulov V A 2011 Phys. Rev. A 84 052901
[24] Kravchuk T, Bandourine Yu, Hoffman A and Esaulov V A 2006 Surf. Sci. 600 L265
[25] Garcia E A, Romero M A, Gonzalez P C and Goldberg E C 2009 Surf. Sci. 603 597
[26] Bolcatto P G, Goldberg E C and Passeggi M C G 1998 Phys. Rev. B 58 5007
[27] Brako R and Newns D M 1981 Surf. Sci. 108 253
[28] Nordlander P and Tully J C 1990 Phys. Rev. B 42 5564
[29] van Wunnik J N M, Broko R, Makoshi K and Newns D M 1983 Surf. Sci. 126 618
[30] Zimny R, Nienhaus H and Winter H 1989 Radiat. Eff. Def. Sol. 109 9
[31] Zimny R 1990 Surf. Sci. 233 333
[32] Borisov A G, Winter H, Dierkes G and Zimny R 1996 Europhys. Lett. 33 229
[33] Hirose E and Torikai E 2008 Surf. Interface Anal. 40 1705
[34] Delos J B 1981 Rev. Mod. Phys. 53 287
[35] McDaniel E W, Mitchell J B A and Rudd M E 1993 Atomic Collisions:Heavy Particle Projectiles (New York:Wiley)
[36] Borisov A G, Kazansky A K and Gauyacq J P 1999 Surf. Sci. 430 165
[37] Hecht T, Winter H, Borisov A G, Gauyacq J P and Kazansky A K 2000 Phys. Rev. Lett. 84 2517
[38] Chakraborty H, Niederhausen T and Thumm U 2004 Phys. Rev. A 69 052901
[39] Guillemot L and Esaulov V A 1999 Phys. Rev. Lett. 82 4552
[40] Borisov A G, Gauyacq J P, Chulkov E V, Silkin V M and Echenique P M 2002 Phys. Rev. B 65 235434
[41] Niedfeldt K, Carter E A and Nordlander P 2006 Surf. Sci. 600 L291
[42] Kravchuk T, Bandourine Yu, Hoffman A and Esaulov V A 2006 Surf. Sci. 600 L265
[43] Borisov A G, Mertens A, Wethekam S and Winter H 2003 Phys. Rev. A 68 012901
[44] Borisov A G, Teillet-Billy D, Gauyacq J P, Winter H and Dierkes G 1996 Phys. Rev. B 54 17166
[45] Nieuwjaer N, Bénazeth C, Benoit-Cattin P, Cafarelli P and Richard-Viard M 2005 Nucl. Instrum. Method B 230 317
[1] Effects of phonon bandgap on phonon-phonon scattering in ultrahigh thermal conductivity θ-phase TaN
Chao Wu(吴超), Chenhan Liu(刘晨晗). Chin. Phys. B, 2023, 32(4): 046502.
[2] Impact of amplified spontaneous emission noise on the SRS threshold of high-power fiber amplifiers
Wei Liu(刘伟), Shuai Ren(任帅), Pengfei Ma(马鹏飞), and Pu Zhou(周朴). Chin. Phys. B, 2023, 32(3): 034202.
[3] Floquet scattering through a parity-time symmetric oscillating potential
Xuzhen Cao(曹序桢), Zhaoxin Liang(梁兆新), and Ying Hu(胡颖). Chin. Phys. B, 2023, 32(3): 030302.
[4] Temperature and strain sensitivities of surface and hybrid acoustic wave Brillouin scattering in optical microfibers
Yi Liu(刘毅), Yuanqi Gu(顾源琦), Yu Ning(宁钰), Pengfei Chen(陈鹏飞), Yao Yao(姚尧),Yajun You(游亚军), Wenjun He(贺文君), and Xiujian Chou(丑修建). Chin. Phys. B, 2022, 31(9): 094208.
[5] Elastic electron scattering with CH2Br2 and CCl2Br2: The role of the polarization effects
Xiaoli Zhao(赵小利) and Kedong Wang(王克栋). Chin. Phys. B, 2022, 31(8): 083402.
[6] Integral cross sections for electron impact excitations of argon and carbon dioxide
Shu-Xing Wang(汪书兴) and Lin-Fan Zhu(朱林繁). Chin. Phys. B, 2022, 31(8): 083401.
[7] Structural evolution and bandgap modulation of layered β-GeSe2 single crystal under high pressure
Hengli Xie(谢恒立), Jiaxiang Wang(王家祥), Lingrui Wang(王玲瑞), Yong Yan(闫勇), Juan Guo(郭娟), Qilong Gao(高其龙), Mingju Chao(晁明举), Erjun Liang(梁二军), and Xiao Ren(任霄). Chin. Phys. B, 2022, 31(7): 076101.
[8] SERS activity of carbon nanotubes modified by silver nanoparticles with different particle sizes
Xiao-Lei Zhang(张晓蕾), Jie Zhang(张洁), Yuan Luo(罗元), and Jia Ran(冉佳). Chin. Phys. B, 2022, 31(7): 077401.
[9] Ion-focused propagation of a relativistic electron beam in the self-generated plasma in atmosphere
Jian-Hong Hao(郝建红), Bi-Xi Xue(薛碧曦), Qiang Zhao(赵强), Fang Zhang(张芳), Jie-Qing Fan(范杰清), and Zhi-Wei Dong(董志伟). Chin. Phys. B, 2022, 31(6): 064101.
[10] Oscillator strength study of the excitations of valence-shell of C2H2 by high-resolution inelastic x-ray scattering
Qiang Sun(孙强), Ya-Wei Liu(刘亚伟), Yuan-Chen Xu(徐远琛), Li-Han Wang(王礼涵), Tian-Jun Li(李天钧), Shu-Xing Wang(汪书兴), Ke Yang(杨科), and Lin-Fan Zhu(朱林繁). Chin. Phys. B, 2022, 31(5): 053401.
[11] Effects of Landau damping and collision on stimulated Raman scattering with various phase-space distributions
Shanxiu Xie(谢善秀), Yong Chen(陈勇), Junchen Ye(叶俊辰), Yugu Chen(陈雨谷), Na Peng(彭娜), and Chengzhuo Xiao(肖成卓). Chin. Phys. B, 2022, 31(5): 055201.
[12] Small-angle neutron scattering study on the stability of oxide nanoparticles in long-term thermally aged 9Cr-oxide dispersion strengthened steel
Peng-Lin Gao(高朋林), Jian Gong(龚建), Qiang Tian(田强), Gung-Ai Sun(孙光爱), Hai-Yang Yan(闫海洋),Liang Chen(陈良), Liang-Fei Bai(白亮飞), Zhi-Meng Guo(郭志猛), and Xin Ju(巨新). Chin. Phys. B, 2022, 31(5): 056102.
[13] Switchable directional scattering based on spoof core—shell plasmonic structures
Yun-Qiao Yin(殷允桥), Hong-Wei Wu(吴宏伟), Shu-Ling Cheng(程淑玲), and Zong-Qiang Sheng(圣宗强). Chin. Phys. B, 2022, 31(5): 054101.
[14] Post-solitons and electron vortices generated by femtosecond intense laser interacting with uniform near-critical-density plasmas
Dong-Ning Yue(岳东宁), Min Chen(陈民), Yao Zhao(赵耀), Pan-Fei Geng(耿盼飞), Xiao-Hui Yuan(远晓辉), Quan-Li Dong(董全力), Zheng-Ming Sheng(盛政明), and Jie Zhang(张杰). Chin. Phys. B, 2022, 31(4): 045205.
[15] Characterization of premixed swirling methane/air diffusion flame through filtered Rayleigh scattering
Meng Li(李猛), Bo Yan(闫博), Shuang Chen(陈爽), Li Chen(陈力), and Jin-He Mu(母金河). Chin. Phys. B, 2022, 31(3): 034702.
No Suggested Reading articles found!