Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(7): 078103    DOI: 10.1088/1674-1056/25/7/078103
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Depositing aluminum as sacrificial metal to reduce metal-graphene contact resistance

Da-cheng Mao(毛达诚), Zhi Jin(金智), Shao-qing Wang(王少青), Da-yong Zhang(张大勇), Jing-yuan Shi(史敬元), Song-ang Peng(彭松昂), Xuan-yun Wang(王选芸)
Department of Microwave Devices and Integrated Circuits, Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029, China
Abstract  Reducing the contact resistance without degrading the mobility property is crucial to achieve high-performance graphene field effect transistors. Also, the idea of modifying the graphene surface by etching away the deposited metal provides a new angle to achieve this goal. We exploit this idea by providing a new process method which reduces the contact resistance from 597 Ω·μm to sub 200 Ω·μm while no degradation of mobility is observed in the devices. This simple process method avoids the drawbacks of uncontrollability, ineffectiveness, and trade-off with mobility which often exist in the previously proposed methods.
Keywords:  graphene      field effect transistor      contact resistance  
Received:  11 December 2015      Revised:  15 March 2016      Accepted manuscript online: 
PACS:  81.05.ue (Graphene)  
  73.22.Pr (Electronic structure of graphene)  
  73.40.-c (Electronic transport in interface structures)  
  72.80.Vp (Electronic transport in graphene)  
Fund: Project by the National Science and Technology Major Project, China (Grant No. 2011ZX02707.3), the National Natural Science Foundation of China (Grant No. 61136005), the Chinese Academy of Sciences (Grant No. KGZD-EW-303), and the Project of Beijing Municipal Science and Technology Commission, China (Grant No. Z151100003515003).
Corresponding Authors:  Zhi Jin     E-mail:  jinzhi@ime.ac.cn

Cite this article: 

Da-cheng Mao(毛达诚), Zhi Jin(金智), Shao-qing Wang(王少青), Da-yong Zhang(张大勇), Jing-yuan Shi(史敬元), Song-ang Peng(彭松昂), Xuan-yun Wang(王选芸) Depositing aluminum as sacrificial metal to reduce metal-graphene contact resistance 2016 Chin. Phys. B 25 078103

[1] Zhou X, Chen J, Gu L and Miao L 2015 Chin. Phys. Lett. 32 026102
[2] Fan T J, Yuan C Q, Tang W, Tong S Z, Liu Y D, Huang W, Min Y G and Epstein A J 2015 Chin. Phys. Lett. 32 076802
[3] Liu Q B, Yu C, Li J, Song X B, He Z Z, Lu W L, Gu G D, Wang Y G and Feng Z H 2014 Chin. Phys. Lett. 31 078104
[4] Zhao W, He D W, Wang Y S, Du X and Xin H 2015 Chin. Phys. B 24 047204
[5] Shao Y, Wang J, Wu H, Liu J, Aksay I A and Lin Y 2010 Electroanalysis 22 1027
[6] Novoselov K S, Fal'ko V I, Colombo L, Gellert P R, Schwab M G and Kim K 2012 Nature 490 192
[7] Hsu A, Wang H, Kim K K, Kong J and Palacios T 2011 IEEE Electron Device Lett. 32 1008
[8] Xia F, Perebeinos V, Lin Y M, Wu Y and Avouris P 2011 Nat. Nanotechnol. 6 179
[9] Liu W, Wei J, Sun X and Yu H 2013 Crystals 3 257
[10] Schwierz F 2010 Nat. Nanotechnol. 5 487
[11] Rizzi L G, Bianchi M, Behnam A, Carrion E, Guerriero E, Polloni L, Pop E and Sordan R 2012 Nano Lett. 12 3948
[12] Choi M S, Lee S H and Yoo W J 2011 J. Appl. Phys. 110 073305
[13] Li W, Liang Y, Yu D, Peng L, Pernstich K P, Shen T, Hight Walker A R, Cheng G, Hacker C A, Richter C A, Li Q, Gundlach D J and Liang X 2013 Appl. Phys. Lett. 102 183110
[14] Lin Y C, Lu C C, Yeh C H, Jin C, Suenaga K and Chiu P W 2012 Nano Lett. 12 414
[15] Cheng Z, Zhou Q, Wang C, Li Q, Wang C and Fang Y 2011 Nano Lett. 11 767
[16] Leong W S, Nai C T and Thong J T 2014 Nano Lett. 14 3840
[17] Moser J, Barreiro A and Bachtold A 2007 Appl. Phys. Lett. 91 163513
[18] Choi W J, Chung Y J, Park S, Yang C S, Lee Y K, An K S, Lee Y S and Lee J O 2014 Adv. Mater. 26 637
[19] Goossens A M, Calado V E, Barreiro A, Watanabe K, Taniguchi T and Vandersypen L M K 2012 Appl. Phys. Lett. 100 073110
[20] Lee J, Kim Y, Shin H J, Lee C, Lee D, Moon C Y, Lim J and Chan Jun S 2013 Appl. Phys. Lett. 103 103104
[21] Gong C, McDonnell S, Qin X, Azcatl A, Dong H, Chabal Y J, Cho K and Wallace R M 2014 ACS Nano 8 642
[22] Leong W S, Gong H and Thong J T 2014 ACS Nano 8 994
[23] Yang R, Wu S, Wang D, Xie G, Cheng M, Wang G, Yang W, Chen P, Shi D and Zhang G 2014 Nano Res. 7 1449
[24] Song S M, Park J K, Sul O J and Cho B J 2012 Nano Lett. 12 3887
[25] Joiner C A, Roy T, Hesabi Z R, Chakrabarti B and Vogel E M 2014 Appl. Phys. Lett. 104 223109
[26] Dimiev A, Kosynkin D V, Sinitskii A, Slesarev A, Sun Z and Tour J M 2011 Science 331 1168
[27] Nath A, Koehler A D, Jernigan G G, Wheeler V D, Hite J K, Herández S C, Robinson Z R, Garces N Y, Myers-Ward R L, Eddy C R, Gaskill D K and Rao M V 2014 Appl. Phys. Lett. 104 224102
[28] Matsuda Y, Deng W Q and Goddard W A 2010 J. Phys. Chem. C 114 17845
[29] Ferrari A C and Basko D M 2013 Nat. Nanotechnol. 8 235
[30] Grosse K L, Bae M H, Lian F, Pop E and King W P 2011 Nat. Nanotechnol. 6 287
[31] Kim S, Nah J, Jo I, Shahrjerdi D, Colombo L, Yao Z, Tutuc E and Banerjee S K 2009 Appl. Phys. Lett. 94 062107
[32] Zhang Z, Xu H, Zhong H and Peng L M 2012 Appl. Phys. Lett. 101 213103
[33] Tan Y W, Zhang Y, Bolotin K, Zhao Y, Adam S, Hwang E H, Das Sarma S, Stormer H L and Kim P 2007 Phys. Rev. Lett. 99 246803
[34] Hwang E H, Adam S and Sarma S D 2007 Phys. Rev. Lett. 98 186806
[1] Polarization Raman spectra of graphene nanoribbons
Wangwei Xu(许望伟), Shijie Sun(孙诗杰), Muzi Yang(杨慕紫), Zhenliang Hao(郝振亮), Lei Gao(高蕾), Jianchen Lu(卢建臣), Jiasen Zhu(朱嘉森), Jian Chen(陈建), and Jinming Cai(蔡金明). Chin. Phys. B, 2023, 32(4): 046803.
[2] Spin- and valley-polarized Goos-Hänchen-like shift in ferromagnetic mass graphene junction with circularly polarized light
Mei-Rong Liu(刘美荣), Zheng-Fang Liu(刘正方), Ruo-Long Zhang(张若龙), Xian-Bo Xiao(肖贤波), and Qing-Ping Wu(伍清萍). Chin. Phys. B, 2023, 32(3): 037301.
[3] Graphene metasurface-based switchable terahertz half-/quarter-wave plate with a broad bandwidth
Xiaoqing Luo(罗小青), Juan Luo(罗娟), Fangrong Hu(胡放荣), and Guangyuan Li(李光元). Chin. Phys. B, 2023, 32(2): 027801.
[4] Correlated states in alternating twisted bilayer-monolayer-monolayer graphene heterostructure
Ruirui Niu(牛锐锐), Xiangyan Han(韩香岩), Zhuangzhuang Qu(曲壮壮), Zhiyu Wang(王知雨), Zhuoxian Li(李卓贤), Qianling Liu(刘倩伶), Chunrui Han(韩春蕊), and Jianming Lu(路建明). Chin. Phys. B, 2023, 32(1): 017202.
[5] Adsorption dynamics of double-stranded DNA on a graphene oxide surface with both large unoxidized and oxidized regions
Mengjiao Wu(吴梦娇), Huishu Ma(马慧姝), Haiping Fang(方海平), Li Yang(阳丽), and Xiaoling Lei(雷晓玲). Chin. Phys. B, 2023, 32(1): 018701.
[6] Precisely controlling the twist angle of epitaxial MoS2/graphene heterostructure by AFM tip manipulation
Jiahao Yuan(袁嘉浩), Mengzhou Liao(廖梦舟), Zhiheng Huang(黄智恒), Jinpeng Tian(田金朋), Yanbang Chu(褚衍邦), Luojun Du(杜罗军), Wei Yang(杨威), Dongxia Shi(时东霞), Rong Yang(杨蓉), and Guangyu Zhang(张广宇). Chin. Phys. B, 2022, 31(8): 087302.
[7] Longitudinal conductivity in ABC-stacked trilayer graphene under irradiating of linearly polarized light
Guo-Bao Zhu(朱国宝), Hui-Min Yang(杨慧敏), and Jie Yang(杨杰). Chin. Phys. B, 2022, 31(8): 088102.
[8] Dual-channel tunable near-infrared absorption enhancement with graphene induced by coupled modes of topological interface states
Zeng-Ping Su(苏增平), Tong-Tong Wei(魏彤彤), and Yue-Ke Wang(王跃科). Chin. Phys. B, 2022, 31(8): 087804.
[9] Recent advances of defect-induced spin and valley polarized states in graphene
Yu Zhang(张钰), Liangguang Jia(贾亮广), Yaoyao Chen(陈瑶瑶), Lin He(何林), and Yeliang Wang(王业亮). Chin. Phys. B, 2022, 31(8): 087301.
[10] Dynamically tunable multiband plasmon-induced transparency effect based on graphene nanoribbon waveguide coupled with rectangle cavities system
Zi-Hao Zhu(朱子豪), Bo-Yun Wang(王波云), Xiang Yan(闫香), Yang Liu(刘洋), Qing-Dong Zeng(曾庆栋), Tao Wang(王涛), and Hua-Qing Yu(余华清). Chin. Phys. B, 2022, 31(8): 084210.
[11] Valley-dependent transport in strain engineering graphene heterojunctions
Fei Wan(万飞), X R Wang(王新茹), L H Liao(廖烈鸿), J Y Zhang(张嘉颜),M N Chen(陈梦南), G H Zhou(周光辉), Z B Siu(萧卓彬), Mansoor B. A. Jalil, and Yuan Li(李源). Chin. Phys. B, 2022, 31(7): 077302.
[12] Photoelectrochemical activity of ZnO:Ag/rGO photo-anodes synthesized by two-steps sol-gel method
D Ben Jemia, M Karyaoui, M A Wederni, A Bardaoui, M V Martinez-Huerta, M Amlouk, and R Chtourou. Chin. Phys. B, 2022, 31(5): 058201.
[13] DC and analog/RF performance of C-shaped pocket TFET (CSP-TFET) with fully overlapping gate
Zi-Xin Chen(陈子馨), Wei-Jing Liu(刘伟景), Jiang-Nan Liu(刘江南), Qiu-Hui Wang(王秋蕙), Xu-Guo Zhang(章徐国), Jie Xu(许洁), Qing-Hua Li(李清华), Wei Bai(白伟), and Xiao-Dong Tang(唐晓东). Chin. Phys. B, 2022, 31(5): 058501.
[14] Thermionic electron emission in the 1D edge-to-edge limit
Tongyao Zhang(张桐耀), Hanwen Wang(王汉文), Xiuxin Xia(夏秀鑫), Chengbing Qin(秦成兵), and Xiaoxi Li(李小茜). Chin. Phys. B, 2022, 31(5): 058504.
[15] Light-modulated electron retroreflection and Klein tunneling in a graphene-based n-p-n junction
Xingfei Zhou(周兴飞), Ziying Wu(吴子瀛), Yuchen Bai(白宇晨), Qicheng Wang(王起程), Zhentao Zhu(朱震涛), Wei Yan(闫巍), and Yafang Xu(许亚芳). Chin. Phys. B, 2022, 31(4): 047301.
No Suggested Reading articles found!