INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Prev
Next
|
|
|
Depositing aluminum as sacrificial metal to reduce metal-graphene contact resistance |
Da-cheng Mao(毛达诚), Zhi Jin(金智), Shao-qing Wang(王少青), Da-yong Zhang(张大勇), Jing-yuan Shi(史敬元), Song-ang Peng(彭松昂), Xuan-yun Wang(王选芸) |
Department of Microwave Devices and Integrated Circuits, Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029, China |
|
|
Abstract Reducing the contact resistance without degrading the mobility property is crucial to achieve high-performance graphene field effect transistors. Also, the idea of modifying the graphene surface by etching away the deposited metal provides a new angle to achieve this goal. We exploit this idea by providing a new process method which reduces the contact resistance from 597 Ω·μm to sub 200 Ω·μm while no degradation of mobility is observed in the devices. This simple process method avoids the drawbacks of uncontrollability, ineffectiveness, and trade-off with mobility which often exist in the previously proposed methods.
|
Received: 11 December 2015
Revised: 15 March 2016
Accepted manuscript online:
|
PACS:
|
81.05.ue
|
(Graphene)
|
|
73.22.Pr
|
(Electronic structure of graphene)
|
|
73.40.-c
|
(Electronic transport in interface structures)
|
|
72.80.Vp
|
(Electronic transport in graphene)
|
|
Fund: Project by the National Science and Technology Major Project, China (Grant No. 2011ZX02707.3), the National Natural Science Foundation of China (Grant No. 61136005), the Chinese Academy of Sciences (Grant No. KGZD-EW-303), and the Project of Beijing Municipal Science and Technology Commission, China (Grant No. Z151100003515003). |
Corresponding Authors:
Zhi Jin
E-mail: jinzhi@ime.ac.cn
|
Cite this article:
Da-cheng Mao(毛达诚), Zhi Jin(金智), Shao-qing Wang(王少青), Da-yong Zhang(张大勇), Jing-yuan Shi(史敬元), Song-ang Peng(彭松昂), Xuan-yun Wang(王选芸) Depositing aluminum as sacrificial metal to reduce metal-graphene contact resistance 2016 Chin. Phys. B 25 078103
|
[1] |
Zhou X, Chen J, Gu L and Miao L 2015 Chin. Phys. Lett. 32 026102
|
[2] |
Fan T J, Yuan C Q, Tang W, Tong S Z, Liu Y D, Huang W, Min Y G and Epstein A J 2015 Chin. Phys. Lett. 32 076802
|
[3] |
Liu Q B, Yu C, Li J, Song X B, He Z Z, Lu W L, Gu G D, Wang Y G and Feng Z H 2014 Chin. Phys. Lett. 31 078104
|
[4] |
Zhao W, He D W, Wang Y S, Du X and Xin H 2015 Chin. Phys. B 24 047204
|
[5] |
Shao Y, Wang J, Wu H, Liu J, Aksay I A and Lin Y 2010 Electroanalysis 22 1027
|
[6] |
Novoselov K S, Fal'ko V I, Colombo L, Gellert P R, Schwab M G and Kim K 2012 Nature 490 192
|
[7] |
Hsu A, Wang H, Kim K K, Kong J and Palacios T 2011 IEEE Electron Device Lett. 32 1008
|
[8] |
Xia F, Perebeinos V, Lin Y M, Wu Y and Avouris P 2011 Nat. Nanotechnol. 6 179
|
[9] |
Liu W, Wei J, Sun X and Yu H 2013 Crystals 3 257
|
[10] |
Schwierz F 2010 Nat. Nanotechnol. 5 487
|
[11] |
Rizzi L G, Bianchi M, Behnam A, Carrion E, Guerriero E, Polloni L, Pop E and Sordan R 2012 Nano Lett. 12 3948
|
[12] |
Choi M S, Lee S H and Yoo W J 2011 J. Appl. Phys. 110 073305
|
[13] |
Li W, Liang Y, Yu D, Peng L, Pernstich K P, Shen T, Hight Walker A R, Cheng G, Hacker C A, Richter C A, Li Q, Gundlach D J and Liang X 2013 Appl. Phys. Lett. 102 183110
|
[14] |
Lin Y C, Lu C C, Yeh C H, Jin C, Suenaga K and Chiu P W 2012 Nano Lett. 12 414
|
[15] |
Cheng Z, Zhou Q, Wang C, Li Q, Wang C and Fang Y 2011 Nano Lett. 11 767
|
[16] |
Leong W S, Nai C T and Thong J T 2014 Nano Lett. 14 3840
|
[17] |
Moser J, Barreiro A and Bachtold A 2007 Appl. Phys. Lett. 91 163513
|
[18] |
Choi W J, Chung Y J, Park S, Yang C S, Lee Y K, An K S, Lee Y S and Lee J O 2014 Adv. Mater. 26 637
|
[19] |
Goossens A M, Calado V E, Barreiro A, Watanabe K, Taniguchi T and Vandersypen L M K 2012 Appl. Phys. Lett. 100 073110
|
[20] |
Lee J, Kim Y, Shin H J, Lee C, Lee D, Moon C Y, Lim J and Chan Jun S 2013 Appl. Phys. Lett. 103 103104
|
[21] |
Gong C, McDonnell S, Qin X, Azcatl A, Dong H, Chabal Y J, Cho K and Wallace R M 2014 ACS Nano 8 642
|
[22] |
Leong W S, Gong H and Thong J T 2014 ACS Nano 8 994
|
[23] |
Yang R, Wu S, Wang D, Xie G, Cheng M, Wang G, Yang W, Chen P, Shi D and Zhang G 2014 Nano Res. 7 1449
|
[24] |
Song S M, Park J K, Sul O J and Cho B J 2012 Nano Lett. 12 3887
|
[25] |
Joiner C A, Roy T, Hesabi Z R, Chakrabarti B and Vogel E M 2014 Appl. Phys. Lett. 104 223109
|
[26] |
Dimiev A, Kosynkin D V, Sinitskii A, Slesarev A, Sun Z and Tour J M 2011 Science 331 1168
|
[27] |
Nath A, Koehler A D, Jernigan G G, Wheeler V D, Hite J K, Herández S C, Robinson Z R, Garces N Y, Myers-Ward R L, Eddy C R, Gaskill D K and Rao M V 2014 Appl. Phys. Lett. 104 224102
|
[28] |
Matsuda Y, Deng W Q and Goddard W A 2010 J. Phys. Chem. C 114 17845
|
[29] |
Ferrari A C and Basko D M 2013 Nat. Nanotechnol. 8 235
|
[30] |
Grosse K L, Bae M H, Lian F, Pop E and King W P 2011 Nat. Nanotechnol. 6 287
|
[31] |
Kim S, Nah J, Jo I, Shahrjerdi D, Colombo L, Yao Z, Tutuc E and Banerjee S K 2009 Appl. Phys. Lett. 94 062107
|
[32] |
Zhang Z, Xu H, Zhong H and Peng L M 2012 Appl. Phys. Lett. 101 213103
|
[33] |
Tan Y W, Zhang Y, Bolotin K, Zhao Y, Adam S, Hwang E H, Das Sarma S, Stormer H L and Kim P 2007 Phys. Rev. Lett. 99 246803
|
[34] |
Hwang E H, Adam S and Sarma S D 2007 Phys. Rev. Lett. 98 186806
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|