Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(3): 038401    DOI: 10.1088/1674-1056/27/3/038401
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

An improved secondary electrons energy spectrum model and its application in multipactor discharge

Wan-Zhao Cui(崔万照)1, Heng Zhang(张恒)1, Yun Li(李韵)1, Yun He(何鋆)1, Qi Wang(王琪)1, Hong-Tai Zhang(张洪太)1, Hong-Guang Wang(王洪广)2, Jing Yang(杨晶)1
1 National Key Laboratory of Science and Technology on Space Microwave, China Academy of Space Technology(Xi'an), Xi'an 710100, China;
2 School of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an 710049, China
Abstract  Secondary electron emission (SEE) of metal and dielectric materials plays a key role in multipactor discharge, which is a bottle neck problem for high-power satelliate components. Measurements of both the secondary electron yield (SEY) and the secondary electron energy spectrum (SES) are performed on metal samples for an accurate description of the real SEE phenomenon. In order to simplify the fitting process and improve the simulation efficiency, an improved model is proposed for the description of secondary electrons (SE) emitted from the material surface, including true, elastic, and inelastic SE. Embedding the novel SES model into the electromagnetic particle-in-cell method, the electronic resonant multipactor in microwave components is simulated successfully and hence the discharge threshold is predicted. Simulation results of the SES variation in the improved model demonstrate that the multipactor threshold is strongly dependent on SES. In addition, the mutipactor simulation results agree quite well with the experiment for the practical microwave component, while the numerical model of SEY and SES fits well with the sample data taken from the microwave component.
Keywords:  secondary electron energy spectrum      multipactor simulation      vaccum breakdown      satellite application  
Received:  03 September 2017      Revised:  07 December 2017      Accepted manuscript online: 
PACS:  84.32.-y (Passive circuit components)  
  52.40.Db (Electromagnetic (nonlaser) radiation interactions with plasma)  
  79.20.Ap (Theory of impact phenomena; numerical simulation)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. U1537211, 11705142, and 11675278) and the National Key Laboratory Foundation, China (Grant No. 9140C530101150C53011).
Corresponding Authors:  Wan-Zhao Cui     E-mail:  cuiwanzhao@126.com

Cite this article: 

Wan-Zhao Cui(崔万照), Heng Zhang(张恒), Yun Li(李韵), Yun He(何鋆), Qi Wang(王琪), Hong-Tai Zhang(张洪太), Hong-Guang Wang(王洪广), Jing Yang(杨晶) An improved secondary electrons energy spectrum model and its application in multipactor discharge 2018 Chin. Phys. B 27 038401

[1] Vaughan J R M 1988 IEEE Trans. Electron Dev. 35 1172
[2] Kishek R, Lau Y Y, Valfells A, Ang K L and Gilgenbach 1998 Phys. Plasma 5 2120
[3] Yang W J, Li Y D and Liu C L 2013 Acta Phys. Sin. 62 087901 (in Chinese)
[4] Song Q Q, Wang X B, Cui W Z, Wang Z Y and Ran L X 2014 Acta Phys. Sin. 63 220205 (in Chinese)
[5] Zhu F, Proch D and Hao J K 2005 Chin. Phys. 14 0494 (in Chinese)
[6] Rozario N and Lenzing H 1994 IEEE Trans. MTT. 42 558
[7] Kudsia C, Cameron R and Tang W C 1992 IEEE Trans. Microwave Theor. Techniq. 40 1133
[8] Li Y D, Yan Y J, Lin S, Wang H G and Liu C L 2014 Acta Phys. Sin. 63 047902 (in Chinese)
[9] Lu Q L, Zhou Z Y, Shi L Q and Zhao G Q 2005 Chin. Phys. 14 1465
[10] Woode A and Petit J 1990 ESA Journal-European Space Agency 14 467
[11] Kossyi I A, Luk'yanchikov G S, Semenov V E, Zharova N A, Anderson D, Lisak M and Puech J 2010 J. Phys. D:Appl. Phys. 43 345206
[12] Zhang N, Cao M, Cui W Z, Hu T C, Wang R and Li Y 2015 Acta Phys. Sin. 64 207901 (in Chinese)
[13] Li Y, Cui W Z, Zhang N, Wang X B, Wang H G, Li Y D and Zhang J F 2014 Chin. Phys. B 23 048402
[14] Li Y, Cui W Z and Wang H G 2015 Phys. Plasma. 22 053108
[15] Li Y and Cui W Z 2012 Proc. 42nd European Microwave Conference, 29 October 2012 Amsterdam The Netherlands 920
[16] Cui W Z, Li Y, Yang J, Hu T C, Wang X B, Wang R, Zhang N, Zhang H T and He Y N 2016 Chin. Phys. B 25 068401
[17] Vaughan J R M 1989 IEEE Trans. Electron Dev. 36 1963
[18] Li Y D, Yang W J, Zhang N, Cui W Z and Liu C L 2013 Acta Phys. Sin. 62 077901 (in Chinese)
[19] Furman M A and PiVi M T F 2002 Phys. Rev. Spec. Top. Accel. Beams. 5 124404
[20] Chung M S and Everhart T E 1974 J. Appl. Phys. 45 707
[21] Hockney R W and Eastwood J W 1981 Computer Simulation Using Particles (New York:McGraw-Hill)
[22] Eastwood J W 1991 Comput. Phys. Commun. 64 252
[23] Goplen B, Ludeking L, Smithe D and Warren G 1995 Comput. Phys. Commun. 87 54
[24] Liu G Z and Shao H 2003 Chin. Phys. 12 0204
[25] Liu L, Li Y D, Wang R, Cui W Z and Liu C L 2013 Acta Phys. Sin. 62 025201 (in Chinese)
[26] Yang J, Cui W Z, Li Y, Xie G B, Zhang N, Wang R, Hu T C and Zhang H T 2016 Appl. Surf. Sci. 382 88
[1] High throughput N-modular redundancy for error correction design of memristive stateful logic
Xi Zhu(朱熙), Hui Xu(徐晖), Weiping Yang(杨为平), Zhiwei Li(李智炜), Haijun Liu(刘海军), Sen Liu(刘森), Yinan Wang(王义楠), and Hongchang Long(龙泓昌). Chin. Phys. B, 2023, 32(1): 018502.
[2] Memristor-based multi-synaptic spiking neuron circuit for spiking neural network
Wenwu Jiang(蒋文武), Jie Li(李杰), Hongbo Liu(刘洪波), Xicong Qian(钱曦聪), Yuan Ge(葛源), Lidan Wang(王丽丹), and Shukai Duan(段书凯). Chin. Phys. B, 2022, 31(4): 040702.
[3] Cascade discrete memristive maps for enhancing chaos
Fang Yuan(袁方), Cheng-Jun Bai(柏承君), and Yu-Xia Li(李玉霞). Chin. Phys. B, 2021, 30(12): 120514.
[4] Artificial synaptic behavior of the SBT-memristor
Gang Dou(窦刚), Ming-Long Dou(窦明龙), Ren-Yuan Liu(刘任远), and Mei Guo(郭梅). Chin. Phys. B, 2021, 30(7): 078401.
[5] SBT-memristor-based crossbar memory circuit
Mei Guo(郭梅), Ren-Yuan Liu(刘任远), Ming-Long Dou(窦明龙), and Gang Dou(窦刚). Chin. Phys. B, 2021, 30(6): 068402.
[6] Suppression of ferroresonance using passive memristor emulator
S Poornima. Chin. Phys. B, 2021, 30(6): 068401.
[7] The coupling effect of air-bridges on broadband spiral inductors in SiC-based MMIC technology
Jia-Xin Zheng(郑佳欣), Xiao-Hua Ma(马晓华), Yang Lu(卢阳), Bo-Chao Zhao(赵博超), Heng-Shuang Zhang(张恒爽), Meng Zhang(张濛), Li-Xiang Chen(陈丽香), Qing Zhu(朱青), Yue Hao(郝跃). Chin. Phys. B, 2017, 26(8): 088401.
[8] An efficient multipaction suppression method in microwave components for space application
Wan-Zhao Cui(崔万照), Yun Li(李韵), Jing Yang(杨晶), Tian-Cun Hu(胡天存), Xin-Bo Wang(王新波), Rui Wang(王瑞), Na Zhang(张娜), Hong-Tai Zhang(张洪太), Yong-Ning He(贺永宁). Chin. Phys. B, 2016, 25(6): 068401.
[9] A novel circuit design for complementary resistive switch-based stateful logic operations
Xiao-Ping Wang(王小平), Lin Chen(陈林), Yi Shen(沈轶), Bo-Wen Xu(徐博文). Chin. Phys. B, 2016, 25(5): 058502.
[10] Reciprocity principle-based model for shielding effectiveness prediction of a rectangular cavity with a covered aperture
Jiao Chong-Qing (焦重庆), Li Yue-Yue (李月月). Chin. Phys. B, 2015, 24(10): 104101.
[11] Switching mechanism for TiO2 memristor and quantitative analysis of exponential model parameters
Wang Xiao-Ping (王小平), Chen Min (陈敏), Shen Yi (沈轶). Chin. Phys. B, 2015, 24(8): 088401.
[12] Memristance controlling approach based on modification of linear M-q curve
Liu Hai-Jun (刘海军), Li Zhi-Wei (李智炜), Yu Hong-Qi (于红旗), Sun Zhao-Lin (孙兆林), Nie Hong-Shan (聂洪山). Chin. Phys. B, 2014, 23(11): 118402.
[13] Characteristics of titanium oxide memristor with coexistence of dopant drift and a tunnel barrier
Tian Xiao-Bo (田晓波), Xu Hui (徐晖). Chin. Phys. B, 2014, 23(6): 068401.
[14] Computation of the locus crossing point location of MC circuit
Liu Hai-Jun (刘海军), Li Zhi-Wei (李智炜), Bu Kai (步凯), Sun Zhao-Lin (孙兆林), Nie Hong-Shan (聂洪山). Chin. Phys. B, 2014, 23(4): 048401.
[15] Three-dimensional simulation method of multipactor in microwave components for high-power space application
Li Yun (李韵), Cui Wan-Zhao (崔万照), Zhang Na (张娜), Wang Xin-Bo (王新波), Wang Hong-Guang (王洪广), Li Yong-Dong (李永东), Zhang Jian-Feng (张剑锋). Chin. Phys. B, 2014, 23(4): 048402.
No Suggested Reading articles found!